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Composite pulses in NMR quantum computation
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I describe the use of techniques based on composite rotations to combat systematic errors in
quantum logic gates. Although developed and described within the context of Nuclear Magnetic
Resonance (NMR) quantum computing these sequences should be applicable to other implementa-
tions of quantum computation.

INTRODUCTION

Quantum computers [1, 2] are explicitly quantum me-
chanical systems that use quantum phenomena to per-
form computational tasks more efficiently than any clas-
sical computer. Unsurprisingly quantum computation
has generated enormous interest, reflecting not just its
potential technological importance, but also the intellec-
tual importance of the challenge provided to previous
formulations of computational complexity theory. This
interest is tempered by the apparent difficulty in building
large scale devices capable of implementing useful com-
putations, but it has proved fairly simple to build small
demonstration devices, and nuclear magnetic resonance
(NMR) has played a leading role in this.

The first ideas on how to build quantum computers
with NMR [3, 4, 5, 6, 7] were swiftly followed by the first
implementations of quantum algorithms [8, 9, 10, 11]. It
must be remembered that the great difficulty in prepar-
ing NMR systems in pure spin states has given rise to
grave concerns about the direct relevance of NMR tech-
niques to attempts to build large scale devices [12, 13, 14],
and has even led to questioning of whether many NMR
quantum computations can be considered true quantum
computations at all [15]. Despite this, NMR remains
an interesting technology for exploring simple quantum
phenomena and developing techniques which may find
applications in other technologies. A number of reviews,
e.g. [16, 17, 18, 19, 20], have described developments in
particular areas of NMR quantum computing. In this
paper I will describe the use of composite pulses, a tech-
nique developed in conventional NMR [21], to the design
of quantum logic gates which are resistant to systematic
errors in their implementation [22, 23, 24, 25].

SPIN-HALF NUCLEI IN LIQUID SAMPLES

There are many possible physical implementations of a
qubit, but a particularly natural implementation is pro-
vided by a spin-half atomic nucleus, such as 1H. A two-
qubit quantum computer can be built from two atomic
nuclei, and so on. It is necessary that the two nuclei are

distinct, so that the the two qubits can be separately ad-
dressed, and there must be some sort of spin–spin inter-
action, so that two-qubit logic gates can be constructed.
This is easily achieved by using two inequivalent nuclei
in a molecule.

The spin Hamiltonian [26, 27, 28, 29] is in principle
quite complicated, but in liquid state (or solution state)
samples is greatly simplified by rapid molecular tum-
bling. This largely removes intermolecular interactions
such as dipolar coupling, and cancels out the anisotropic
parts of intramolecular interactions, such as the chemical
shift and scalar coupling, reducing them to their isotropic
forms. The cancellation of intermolecular interactions re-
sults in an ensemble of identical independent molecules,
which can for most practical purposes be treated as a sin-
gle molecule in a (usually [30]) highly mixed spin state.
(This cancellation is not, of course, perfect, and inter-
molecular and anisotropic interactions remain an impor-
tant source of spin relaxation.)

An important practical distinction can be made be-
tween systems where all the spins are of different nuclear
species (a fully heteronuclear spin system) and those with
two or more nuclei of the same type (a homonuclear spin
system). As there are a limited number of different spin-
half nuclei, among which only six (1H, 13C, 15N, 19F, 29Si
and 31P) have been used in quantum computing exper-
iments so far, it is clear than only very small quantum
computers can be fully heteronuclear, but the relative
ease of working with such systems makes them popular
for implementing simple tasks.

Systems involving quadrupolar nuclei, with spins
greater that one half, or nuclei in solid or liquid-crystal
samples, have also been studied, but for simplicity in this
paper I will only consider systems of spin-half nuclei in
the liquid state. The NMR Hamiltonian for such a sys-
tem is in general given by

H/~ =
∑

j

ωj

2
σj

z +
∑

j<k

ωjk

2
σj · σk (1)

although in real systems the coupling strengths ωjk be-
tween distant nuclei can frequently be taken as zero.
Spin–spin couplings are fairly weak, and so in many cases
(including all fully heteronuclear systems) it is possible
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to use the weak coupling approximation

|ωjk| ≪ |ωj − ωk| (2)

leading to the simplified Hamiltonian

H/~ ≈
∑

j

ωj

2
σj

z +
∑

jk

ωjk

2
σj

zσ
k
z (3)

where the sum is now taken over spin pairs with non-
negligible couplings.

NMR texts and papers typically describe spin systems
using product operator notation [28, 29], which is closely
related to but not quite identical to conventional physics
notation [16]. Within this language a two-spin system
would be described by the Hamiltonian

H = 2πνI Iz + 2πνS Sz + πJ 2IzSz (4)

where

Iz = 1

2
σ1

z , Sz = 1

2
σ2

z , (5)

and the factor of ~ has simply been dropped by choosing
to work in angular frequency units.

Quantum logic gates

It is well known that in order to perform general quan-
tum computations, it is only necessary to implement
single-qubit gates, which change the state of a single
qubit, and one non-trivial two-qubit gate, for which the
final state of at least one of the two qubits involved de-
pends on the initial states of both qubits, so that the two-
qubit gate encodes some sort of conditional logic [31].

Single-qubit gates correspond to rotating a single spin
in its own one-spin Hilbert space. For a one qubit com-
puter, implemented using a single nuclear spin, this can
be achieved by applying RF fields. For simplicity if of-
ten best to consider only resonant RF fields, so that the
rotation has the form

U(θ, φ) = exp[−iθ(Ix cosφ + Iy sin φ)] (6)

where θ and φ are the pulse nutation (flip) and phase
angles. Rotations about axes not in the xy plane can
be implemented as sequences of pulses. For example,
rotations around the z axis are easily constructed with
composite Z-rotations [32], using identities such as

θz = 90y θx 90−y (7)

where the pulse sequence is written with time running
from left to right, so that the leftmost pulse is the first
pulse applied. In larger spin systems it is necessary to do
this in a qubit-selective manner; in a fully heteronuclear
spin system qubit selection is simple, as every spin will
be a long way from resonance with every other spin, and

simple pulses applied on resonance can be used, but in
homonuclear spin systems more sophisticated approaches
are necessary [16].

Next I turn to non-trivial two-qubit gates in two-spin
(two-qubit) systems. In NMR experiments the key two-
qubit gate is the controlled-Z gate









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









(8)

which is easily converted to a controlled-not by a pair of
Hadamard gates. Controlled-Z is symmetric between the
two spins and it can be easily decomposed with product
operators [33] as

controlled-Z = exp[−iπ/2 (1

2
E − Iz − Sz + 2IzSz)] (9)

where E indicates the identity matrix. All four terms
commute, and so can be considered individually. The
1

2
E term is just a global phase, and can be ignored as

usual. Terms in Iz and Sz are single qubit rotations, and
so can be implemented with single-qubit gates, or simply
absorbed into the reference frame [34, 35]. This leaves
the only important term, which corresponds to evolution
under the spin–spin coupling term, πJ 2IzSz for a time
1/2J . The spin Hamiltonian will include both Zeeman
and coupling terms, but conventional spin-echo sequences
[36] can be used to remove the undesirable terms [37].

COMPOSITE PULSES

Composite pulses [21] have found widespread use in
conventional NMR experiments to reduce the effects of a
wide range of experimental imperfections, most notably
off-resonance effects, which arise when the RF field is not
quite resonant with the transition so that nutation occurs
around a tilted axis, and pulse length errors arising from
variations in the strength of the RF field. (These er-
rors could be better described as pulse strength errors,
but the unhelpful name is almost universal.) As similar
imperfections are likely to affect most experimental im-
plementations of quantum information processing there
has been interest in applying these ideas.

Composite pulses are only one of a whole range of tech-
niques for improving the quality of RF excitation in NMR
experiments. Traditionally these can be divided into
composite pulses, made up of a small number of pulses,
each with the same frequency and strength but differ-
ing in length and phase, and shaped pulses [38], which
contain a very large number of elements, each with the
same frequency and length but differing in strength and
phase. A further pragmatic distinction is that composite
pulses can often be derived and explained using analyt-
ical approaches, while shaped pulses are frequently de-
rived numerically using analytic ideas only as an outline
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guide. These distinctions have increasingly broken down
with the advent of strongly modulated composite pulses
[39]: these contain a small number of pulse elements,
but these pulses are permitted to vary in frequency and
amplitude as well as phase, and the pulse sequence is
obtained by numerical optimisation. More recently still
these have largely been superseded by arbitrary shaped
pulses developed using optimal control theory, usually
based on the GRAPE algorithm [40, 41]. In this review
I will confine myself to “conventional” composite pulses,
with analytical derivations.

Most conventional composite pulses are not suitable
for use in quantum computers, as they are optimised for
particular classes of initial state: for example, most com-
posite 180◦ pulses are optimised either for inverting the
population of a spin or for producing a spin echo. By con-
trast, pulses used on quantum computers must be general
rotors, which perform well for any initial state. Com-
posite pulses of this kind are rarely used in conventional
NMR, but a small number of so-called Class A composite
pulses [21] are known, and these have been developed for
use in quantum computation. A method for construct-
ing general rotors from conventional point-to-point pulses
has also been described [42].

Fidelity Measures

The quality of a composite pulse for quantum com-
puting can be assessed in various ways, but in practice
there are two important families of approaches. The most
direct approach is to expand the propagator for the com-
posite pulse as a power series in the size of the error, and
determine the size and order of the lowest order error
term. As an example consider implementing a 180◦x ro-
tation using a naive pulse with a fractional pulse length
error of ǫ, so that the flip angle of the pulse is in fact
180 × (1 + ǫ). The ideal propagator is then

U = exp[−iπ σx/2] =

(

0 −i
−i 0

)

(10)

while the actual propagator is

V = exp[−iπ(1 + ǫ)σx/2] (11)

=

(

0 −i
−i 0

)

− ǫ

(

π/2 0
0 π/2

)

+ O(ǫ2) (12)

and so the naive pulse has an error of order ǫ. Alter-
natively the quality can be assessed by calculating the
propagator fidelity between U and V , given by

F = |Tr(V U−1)|/Tr(UU−1), (13)

and then expanding the fidelity as a power series in the
error. For the naive pulse considered above the fidelity is

F = 1 − ǫ2π2/8 + O(ǫ4) (14)

and the naive pulse has infidelity of order ǫ2. The dif-
ference between these two methods of assessing a pulse
must be borne in mind when comparing pulses in differ-
ent papers; in general an error of order n will correspond
to an infidelity of order 2n [43, 44].

Off-resonance errors

An early composite 90◦ pulse tackling off-resonance er-
rors was described by Tycko [45], replacing a 90◦x pulse
with the three pulse sequence 385◦x320◦

−x25◦x. This has
subsequently been generalised to give the corpse family
of composite pulses [23, 24], in which a θx pulse is re-
placed by three pulses, applied along the +x, −x and +x
axes as before, with flip angles given by

θ1 = 2n1π +
θ

2
− arcsin

(

sin(θ/2)

2

)

(15)

θ2 = 2n2π − 2 arcsin

(

sin(θ/2)

2

)

(16)

θ3 = 2n3π +
θ

2
− arcsin

(

sin(θ/2)

2

)

(17)

where n1, n2 and n3 are integers, with the best results
[24] occurring for n1 = n2 = 1 and n3 = 0. These se-
quences have been demonstrated by NMR [23], squid

[46] and neutral atom [47] experiments. Pulse sequences
have also been designed which are tailored for particular
off-resonance effects [48].

Pulse length errors

While off-resonance errors are important in conven-
tional NMR, they can largely be avoided in quantum in-
formation processing experiments. Pulse length errors,
however, remain a universal problem, arising from in-
homogeneities in the RF field, either in space (over a
macroscopic sample) or in time (due to slow fluctuations
in amplifier power). There has, therefore, been consid-
erable interest in composite pulses to tackle pulse length
errors, which can largely be traced back to a three pulse
composite 180◦ pulse due to Tycko [45] or to the BB1
family of sequences discovered by Wimperis [49]. Tycko’s
pulse sequence has been generalised to give the scrofu-

lous family of composite pulses [24], but using the BB1
family is preferable in most cases.

BB1 differs from many other composite pulses in that
it seeks to design an error-correcting pulse, which can be
combined with the naive error-prone pulse to give a more
accurate compound pulse, much as a contact lens can be
used to correct eyesight. Originally [49] this error cor-
recting sequence (sometimes called a W1 sequence) was
placed before the naive pulse, but it can instead be placed
after the naive pulse, or indeed in the middle of it [24, 25].
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It comprises three pulses, in the form 180◦φ1
360◦φ2

180◦φ1
,

with φ2 = 3 φ1 and

φ1 = ± arccos

(

−
θ

4π

)

(18)

where the choice of sign is unimportant as long as it is
made consistently.

In addition to NMR experiments [25, 50] BB1 pulses
have been demonstrated in electron spin resonance [51,
52] and neutral atoms [47], and have inspired applications
in other fields [53, 54, 55].

Higher precision sequences

BB1 has proved a remarkably successful composite
pulse, and is surprisingly difficult to improve upon. BB1
pulses can be derived by designing composite pulses
which suppress first order pulse length errors, but it turns
out that BB1 also suppresses second order errors auto-
matically, leaving only third order errors (sixth order in-
fidelity). It is not clear why this fortuitous double can-
cellation occurs, and it is not a general feature of com-
posite pulses. Other pulses with similar properties are
known [56], but these have no advantages over BB1. Be-
yond this, BB1 pulses are also relatively robust to off
resonance-errors [24], and generally insensitive to small
errors in their implementation, so that BB1 pulses work
in practice very much as expected from theory [25].

Although BB1 has proved highly successful, it is ob-
viously interesting to seek still better pulse sequences,
and Brown et al. have tackled this in two ways [43, 44].
Firstly they have shown how the BB1 approach can, in
effect, be nested, creating ever higher orders of simulta-
neous correction. A robust 90◦ pulse from the B4 fam-
ily of pulses (which remove the third order error term)
has been implemented in NMR experiments [25], but this
composite pulse is very long (the correction sequence con-
tains 27 pulses with a total length equivalent to a 7200◦

rotation) and does not perform much better than BB1.
Secondly they have described a general method, using in-
sights from the Solovay–Kitaev theorem [57], to show how
arbitrarily accurate composite pulses can be constructed
in general, by building a series of correction sequences
which correct errors one order at a time. An expanded
version of part of their method written in more conven-
tional NMR notation is also available [58]. Once again
high order corrections sequences developed using these
ideas can become extremely long, and it is not clear how
well such complex pulses will work in practice. In com-
parison BB1 pulses are extremely robust [25], and so may
prove the ideal compromise between theoretical precision
and practical implementation.

Two qubit gates

The method can be extended to build two-qubit gates
which are robust to variations in the size of the underly-
ing scalar coupling [59, 60] using an analogy between ro-
tations on the Bloch sphere and the rotations in a multi-
qubit Hilbert space which correspond to evolution under
the spin–spin coupling. In combination with the single
qubit gates described previously these provide a univer-
sal set of robust quantum logic gates. They have been
demonstrated using NMR techniques [25], but it is not
yet clear how important they will prove in practice.

Conclusions

Composite pulse techniques adapted from conventional
NMR experiments have already proved to be extremely
useful in NMR quantum computation, and have begun
to find wider applications in related fields. Pulse length
errors, which ultimately relate to uncertainties in the
strength of the external control fields, are likely to have
analogies in many implementations of quantum informa-
tion processing, and the BB1 pulse sequence provides
an apparently ideal method for tackling these, combin-
ing good suppression of errors, relative simplicity, and an
apparent robustness to imperfections in its implementa-
tion.

I thank the UK EPSRC for financial support.
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