
Chapter 5

QFT, Period Finding &
Shor’s Algorithm

5.1 Quantum Fourier Transform

Quantum Fourier Transform is a quantum implementation of the discreet
Fourier transform. You might be familiar with the discreet Fourier Trans-
form or Fourier Analysis from the context of signal processing, linear algebra,
or one of its many other applications. In short, Fourier Analysis is a tool to
describe the internal frequencies of a function.

Here we will present a quantum algorithm for computing the discreet
Fourier transform which is exponentially faster than the famous Fast Fourier
Transform of classical computers. However, this algorithm is an example of the
tension between exponentially faster quantum algorithms and the problems of
measurement. While we can carry out the QFT algorithm to transform the n
qubit state vector |α� = α0 |0�+ α1 |1�+ · · ·+ αn |n� to its Fourier transform
|β� = β0 |0�+ β1 |1�+ · · ·+ βn |n�, a measurement on |β� will only return one
of its n components, and we are not able to recover all the information of the
Fourier transform. For this reason, we describe this algorithm as quantum
Fourier sampling.

The Quantum Fourier Transform is a generalization of the Hadamard
transform. It is very similar, with the exception that QFT introduces phase.
The specific kinds of phases introduced are what we call primitive roots of
unity, ω. Before defining the Fourier Transform, we will take a quick look at
these primitive roots of unity.

Recall that in the complex numbers, there exist n solutions to the equation
zn = 1. For example if n = 2, z could be 1 or -1. If n = 4, z could be 1, i,−1,
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or −i. You can easily check that these roots can be written as powers of
ω = e2πi/n. This number ω is called a primitive nth root of unity. In the
figure below ω is drawn along with the other complex roots of unity for n=5.

ω = e2πi/5

ω2

ω3

ω4
−i

i

1 = ω5
−1

φ = 2π/5

Figure 5.1: The 5 complex 5th roots of 1.

In this figure, we see that ω lies on the unit circle so | ω |= 1, and the
line from the origin to ω makes the angle φ = 2π/M with the real line. If we
square ω, we double the angle. Furthermore, if we raise ω to the jth power,
ωj has phase angle φ = 2jπ/M and is still an Mth root of unity.

Now, we can move in to the Fourier Transform itself. The discreet Fourier
transform is defined by

QFTM =
1

√
M





1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωM−1

1 ω2 ω4 ω6 · · · ω2M−2

1 ω3 ω6 ω9 · · · ω3M−3

...
...

...
...

. . .
...

1 ωM−1 ω2M−2 ω3M−3 · · · ω(M−1)(M−1)





Another way of writing this is to say that the jkth entry of QFTM is ωjk.
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The transform takes the vector





α0

α1
...

αn−1




to its Fourier transform





β0
β1
...

βn−1




as

specified by the above matrix.

Examples

Ex. 1

Lets take a look at QFT2. Because M = 2, ω = 2πi = −1 Therefore we
have

QFT2 =
1
√
2

�
1 1
1 ω

�
=

1
√
2

�
1 1
1 −1

�

As you can see, QFT2 is simply equal to H⊗2.
How about QFT4? The primitive 4th root of unity is i, so that

QFT4 =
1

2





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i





Ex. 2

Find the quantum Fourier transform for M = 4 of the functions |f� =

1
2(|0�+ |1�+ |2�+ |3�) =





1
1
1
1



; |g� = |0� =





1
0
0
0



, and |h� = |1� =





0
1
0
0



.

The corresponding Fourier transforms are given by:

1. QFT4 to |f�.

���f̂
�
=

1

4





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









1
1
1
1



 =





1
0
0
0





2. QFT4 on |g�:

|ĝ� =
1

2





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









1
0
0
0



 =
1

2





1
1
1
1




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3. QFT4 on |h�:

���ĥ
�
=

1

2





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









0
1
0
0



 =
1

2





1
i
−1
−i





Lets do a bit of analysis of these examples. In example 1, you might notice
that the columns of QFT4 are orthogonal. For example, the inner product of
the first column with the second column is 1

2 [(1∗1)+(1∗−i)+(1∗−1)+(1∗i)] =
1
2(1 − i − 1 + i) = 0. You should also notice that, by design, the columns of
QFT4 have magnitude 1. Thus QFT4 is unitary.

Another thing you should notice is that the vectors like |f� that had a lot
of zeros (large spread) had Fourier transforms with few zeros (narrow spread),
and vice-versa.

Finally, in examples 2 and 3, notice how the only difference between the
Fourier transforms of |g� and |h� is a difference of relative phase shifts.

We would like to be able to make some statements to solidify these ideas
about Fourier transforms, so lets prove them.

Properties of QFT

Studying the properties of a mathematical object gives us insight into the way
it works. These properties will not only be important to our use of the Fourier
transform later on, but they also provide a foundation of how to understand
the discreet Fourier transform.

1. QFTM is unitary.

Proof It is well known that an operator is unitary if its columns are
orthonormal. Denote the ith and jth columns of QFTM as Fi and Fj .

Then Fi =
1√
M





1
ωi∗1

...
ωi∗(M−1)




and Fj =

1√
M





1
ωi∗j

...
ωj∗(M−1)




. Thus

�Fi|Fj� =
1

M

M−1�

n=0

ωniωnj =
1

M

M−1�

n=0

(ωi−j)n

From here it is easy to see that if i = j, �Fi|Fj� = 1.



5.1. QUANTUM FOURIER TRANSFORM 53

For the case i �= j, we will notice that 1
M

�
M−1
n=0 (ωi−j)n is a geometric

series, and expand the sum. Thus

1

M

M−1�

n=0

(ωi−j)n =
1

M

ωM(i−j) − 1

ωi−j − 1
=

1

M

1− 1

ωi−j − 1
= 0

where ωM(i−j) = 1 because ω is an Mth root of unity.

Because the Fourier transform is a unitary operator, we can implement
it in a quantum circuit. Thus if N = 2n, we can apply the Fourier
transform QFTN to a n-qubit system.

2. Linear Shift. This, property exemplified above, states that a linear
shift of a state-vector causes a relative phase shift of its Fourier trans-
form. This is expressed mathematically by saying if |f(x)� , x ∈ ZM

has Fourier transform
���f̂(x)

�
, then |f(x+ j)� has Fourier transform

���f̂(x)
�
e

2π
M xj . Furthermore, becauseQFTM is unitary andQFTMQFT †

M
=

I, the converse is true. A linear phase shift on |f� produces a linear shift

in
���f̂
�
.

So if QFTN





α0

α1
...

αN−1




=





β0
β1
...

βN−1




, then QFTN





α1

α2
...
α0




=





β0
ωβ1
...

ωN−1βN−1





and QFTN





α0

ωα1
...

ωN−1αN−1




=





β1
β2
...
β0




.

If you have never seen this property before, it should be shocking. We
will not offer a proof of this in general here, but below show this in the
example that N = 4.

Let |Θ� =





α0

α1

α2

α3



 and |Φ� =





α1

α2

α3

α0



. Then
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���Θ̂
�
=

1

2





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









α0

α1

α2

α3



 =
1

2





α0 + α1 + α2 + α3

α0 + iα1 − α2 − iα3

α0 − α1 + α2 − α3

α0 − iα1 − α2 + iα3



 =





β0
β1
β2
β3





���Φ̂
�
=

1

2





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









α1

α2

α3

α0



 =
1

2





α0 + α1 + α2 + α3

−iα0 + α1 + iα2 − α3

−α0 + α1 − α2 + α3

iα0 + α1 − iα2 − α3



 =





β0
−iβ1
−β2
iβ3





The important point here is that the only difference between
���Θ̂

�
and

���Φ̂
�
is a relative phase shift. But does this matter?

If we are going to measure a state, then the phases don’t matter at all,
because if the phase is φ, �φ |φ� = 1. Therefore the phase of a given
state does not effect the probability of measuring that state. However,
there is a way we can gather information about the pahses.

We won’t be able to tell by measuruing the difference between 1
2





1
1
1
1





and 1
2





1
i
−1
−i



 by making a measurment. However, if we apply QFT,

we see that QFT4
1
2





1
1
1
1



 =





1
0
0
0



 and QFT4
1
2





1
i
−1
−i



 =





0
1
0
0



. Thus,

measuring the Fourier Transform of the states will reveal the relative
phases.

3. Period/Wavelength Relationship. Suppose f is periodic with period r,
for example

Then f̂ (the Fourier transform of f) is periodic with period M/r. Thus,
f̂ would look something like below figure.

If r is the period of f , we can think of M/r as the wavelength of f . If
you already have intuition for Fourier transform this should come as no
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r 2r · · · M − r M

f(x)

M

r

· · ·2M

r
M

f̂(x)

surprise. In general, the wider the range of a function, the sharper the
range in the Fourier domain; and vise versa. In example, the fourier
transform of a delta function is an even spread, while the transform of
an even spread is a delta function.

We will prove this in a special case, where f(x) =

��
r

M
if x = 0 (mod r)

0 otherwise.
While this is a very special case, it is actually the only case that we will
need to develop Shor’s algorithm. Furthermore this property can be
proved in general.

r 2r · · · M − r M

�
r

M

Figure 5.2: f(x)

M/r 2M/r · · · M

1√
r

Figure 5.3: f̂(x)
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Because this function is relatively simple, we can prove the desired re-

lationship by brute force. Suppose |α� =





α0

α1
...

αN




has Fourier transform

|β� =





β0
β1
...

βN




, then the jth component of its Fourier transform is given

by

βj =
1

√
M

N−1�

i=0

αiω
ij (5.1)

This expression comes from matrix multiplication, you should take a
look at FN to verify this if it looks unfamiliar. In our special case,

f(x) =

��
r

M
if x = 0 (mod r)

0 otherwise.
. Using (1.1) we can calculate its

Fourier transform

f̂(x) =

√
r

M

M
r −1�

i=0

ωrix (5.2)

Where we have written f̂(x) instead of f̂j because the f̂j is equal to the
value of the Fourier transform evaluated at x = j.

We have seen sums like this before. It is just a geometric series, and it
is not too difficult to compute.

M
r −1�

i=0

ωrix =
ωMx − 1

ωrx − 1

But ωMj = 1 (recall ωM = 1), so the numerator is always equal to
0. The only time the denominator can equal zero is when rx = kM , or
x = kM

r
≡ 0 (mod M

r
). In this case, the numerator and the denominator

are equivalently 0, so we must compute the limit using l’Hospitals rule.
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lim
x→k

M
r

ωMx − 1

ωrx − 1
= lim

x→k
M
r

M

r

ωMx−1

ωrx−1

= lim
x→k

M
r

M

r

ωMx

ωrx

ω−1

ω−1

=
M

r

When we plug this result back into (1.2), the outcome is the desired
result.

f̂(x) =

�
1√
r

if x = 0 (mod M

r
)

0 otherwise.

Notice that the normalization factor makes good sense.

To get a look at how we could prove this property in general, imagine
periodic functions (in r) of this type as a basis for any periodic function.
Allow the possibility of relative phase shifts, and you can prove this
property in general.

Classical Fast Fourier Transform

The FFT was a major breakthrough for classical computers. Because the
Fourier transform is an M ∗M matrix, straightforward multiplication by FM

would take O(M2) steps to carry out, because multiplication of f on each row
takes M multiplications. The FFT reduced this to O(M logM) steps. The
FFT is incredibly important in signal processing that essentially all of your
electronics rely on it. Without the FFT, modern electronics would have far
fewer capabilities and would be much slower than they are today.

The FFT requires only that M = 2m for some integer m, but this is
a relatively easy requirement because the computer can simply choose their
domain.

The fast Fourier transform uses the symmetry of the Fourier transform to
reduce the computation time. Simply put, we rewrite the Fourier transform
of size M as two Fourier transforms of size M/2 - the odd and the even terms.
We then repeat this over and over again to exponentially reduce the time. To
see how this works in detail, we turn to the matrix of the Fourier transform.
While we go through this, it might be helpful to have QFT8 in front of you
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to take a look at. Note that the exponents have been written modulo 8, since
ω8 = 1.





1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1





Notice how row j is very similar to row j + 4. Also, notice how column j
is very similar to column j + 4. Motivated by this, we are going to split the
Fourier transform up into its even and odd columns.

ωjk

k

j

α0
α1
α2
α3
α4

...

αn−1

= ω2jk

2k

ωjω2jk

2k + 1

j

even
columns

odd
columns

α0

α2
...

αn−2

α1

α3

...
αn−1

=

2k 2k + 1

j

j + N

2 ω2jk

ω2jk

−ωjω2jk

ωjω2jk

α0

α2
...

αn−2

α1

α3

...
αn−1

In the first frame, we have represented the whole Fourier transform matrix
by describing the jth row and kth column: ωjk. In the next frame, we separate
the odd and even columns, and similarly separate the vector that is to be
transformed. You should convince yourself that the first equality really is
an equality. In the third frame, we add a little symmetry by noticing that
ωj+N/2 = −ωj (since ωn/2 = −1).

Notice that both the odd side and even side contain the term ω2jk. But
if ω is the primitive Nth root of unity, then ω2 is the primitive N/2nd root
of unity. Therefore, the matrices whose j, kth entry is ω2jk are really just
QFTN/2! Now we can write QFTN in a new way:

Now suppose we are calculating the Fourier transform of the function f(x).
We can write the above manipulations as an equation that computes the jth
term f̂(j).
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QFTN

α0
α1
α2
α3
α4

...

αn−1

=

j

j + N

2
QFTN/2

QFTN/2

−ωjQFTN/2

ωjQFTN/2

α0

α2
...

αn−2

α1

α3

...
αn−1

f̂(j) =
�
FM/2

−−→
feven

�
(j) + ωj

�
FM/2

−−→
fodd

�
(j)

This turns our calculation of QFTN into two applications of QFTN/2. We
can turn this into four applications of QFTN/4, and so forth. As long as
N = 2n for some n, we can break down our calculation of QFTN into N
calculations of QFT1 = 1. This greatly simplifies our calculation.

Quantum Fourier Transform w/ quantum gates

The strength of the the FFT is that we are able to use the symmetry of the
discreet Fourier transform to our advantage. The circuit application of QFT
uses the same principle, but because of the power of superposition QFT is
even faster.

The QFT is motivated by the FFT so we will follow the same steps, but
because this is a quantum algorithm the implementation of the steps will be
different. That is, we first take the Fourier transform of the odd and even
parts, then multiply the odd terms by the phase ωj .

In a quantum algorithm, the first step is fairly simple. The odd and even
terms are together in superposition: the odd terms are those whose least
significant bit is 1, and the even with 0. Therefore, we can apply QFTM/2 to
both the odd and even terms together. We do this by applying we will simply
apply QFTM/2 to the m-1 most significant bits, and recombine the odd and
even appropriately by applying the Hadamard to the least significant bit.

Now to carry out the phase multiplication, we need to multiply each odd
term j by the phase ωj . But remember, an odd number in binary ends with a 1
while an even ends with a 0. Thus we can use the controlled phase shift, where
the least significant bit is the control, to multiply only the odd terms by the
phase without doing anything to the even terms. Recall that the controlled



60 CHAPTER 5. QFT, PERIOD FINDING & SHOR’S ALGORITHM

m− 1 qubits

least significant bit

→QFTM

QFTM/2

H

Figure 5.4: QFTM/2 and a Hadamard gate correspond to FFTM/2 on the
odd and even terms

phase shift is similar to the CNOT gate in that it only applies a phase to the
target if the control bit is one.

The phase associated with each controlled phase shift should be equal to
ωj where j is associated to the kth bit by j = 2k.

Thus, apply the controlled phase shift to each of the first m − 1 qubits,
with the least significant bit as the control. With the controlled phase shift
and the Hadamard transform, QFTM has been reduced to QFTM/2.

m− 1 qubits

least significant bit

→

QFTM

QFTM/2

ω

ω2

ω4

...
H

Figure 5.5: QFTM is reduced to QFTM/2 and M additional gates

Example

Lets construct QFT3. Following the algorithm, we will trun QFT3 into QFT2

and a few quantum gates. Then continuing on this way we turn QFT2 into
QFT1 (which is just a Hadamard gate) and another few gates. Controlled
phase gates will be represented by Rφ.

then run through another iteration to get rid of QFT2

You should now be able to visualize the circuit for QFT on more qubits
easily. Furthermore, you can see that the number of gates necessary to carry
out QFTM it takes exactly

�logM
i=1 i = logM(logM + 1)/2 = O(log2M).



5.2. PERIOD FINDING 61

|x0�

|x1�

|x2�

QFT2

Rπ/4

Rπ/2

H

Figure 5.6: First Iteration

|x0�

|x1�

|x2�

QFT2
H Rπ/2

H

Rπ/4

Rπ/2

H

Figure 5.7: Second Iteration. Recall that H = QFT1

5.2 Period Finding

Suppose we are given a black box for computing a periodic function, i.e. a
function such that

f(x) = f(y) if and only if x ≡ y (mod r)

The goal of a period finding algorithm is to find r.
The algorithm for period finding is very similar to Simon’s algorithm, in

fact we can think of it as a generalization of Simon’s algorithm. The steps we
follow are very similar.

Classically, we could solve this problem by querying our function with
subsequent inputs until the function repeats. This takes O(r) = O(2n) queries
to the function. There are other ways to solve this problem, but it can be
shown that all classical algorithms solve this problem in exponential time.

With a Quantum computer, we can access the function in superposition
to query the function with N = 2n inputs for each n qubits at the same
time. The key ingredients to our approach will be the period/wavelength and
linear shift properties of the Fourier transform. We first access the function
in superposition to create a periodic superposition (that may include a linear
shift), and then take its Fourier transform to get rid of the linear shift.

This approach is very similar to the approach of Simon’s algorithm, and is
the historical motivation for the period finding algorithm. Lets examine the
details.
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Step 1: Prepare the periodic superposition
�

r

N

�N/r−1
j=0 |x0 + jr�

Step 2: Fourier sample to produce y = kN

r
for k ∈ {0, 1, · · · , r − 1}.

Step 3: Repeat until there are enough such y’s so that we can compute
their greatest common divisor and solve for r.

Step 1. It is best to start a quantum algorithm with the easily prepared
state |0�, but we need to prepare the quantum state 1√

N

�
N−1
x=0 |x� |0� so that

we can access our function in superposition. Noticing that the Fourier trans-
form of the state |0� produces the disired state, we will implement it on the
first n qubits, so that

|0� |0�
QFTN
−→

1
√
N

N−1�

x=0

|x� |0�

Next, as in Simon’s algorithm, we access our function in superposition. Let
Uf be the unitary transformation that carries out our function, and implement
it so that

1
√
N

N−1�

x=0

|x� |0�
Uf
−→

1
√
N

N−1�

x=0

|x� |f(x)�

To get a periodic superposition out of this, we measure |f�. Then |f� must
collapse into some value f(x0). Furthermore, because measuring |f� reveals
information about |x�, the state |x� will also collapse into the pre-image of
f(x0). But because f is periodic, the pre-image of f(x0) is {x0, x0 + r, x0 +
2r, · · · , x0 + (N

r
− 1)r}. So our measurement makes this change:

1
√
8

N−1�

x=0

|x� ⊗ |f(x)�
measure|f�

−→

�
r

N

N/r−1�

i=0

|ir + x0� |f(x0)�

Now our first register is in a periodic superposition, where the period is
the same as the period of the function! But we can’t just measure, because
each time we run the algorithm, we might measure a different value of |f�,
thus obtaining a periodic superposition that is linearly shifted.

Step 2: We can’t just measure our superposition right away, because that
would destroy the superposition, and because of the random linear shift x0 we
wouldn’t acquire any useful information. Instead, we will rely on the properties
of the Fourier transform to retrieve the information we want. Remember that
if f is periodic with period r such that N/r = k, then f̂ is periodic with period
k. Furthermore, remember that we only see the effect of the linear shift x0 in
the phase of f̂ . Therefore if we take the Fourier transform of the first register,
we will be left only with states that are multiples of N/r.
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�
r

N

N/r−1�

i=0

|ir + x0�
QFTN
−→

1
√
r

r−1�

i=0

����i
N

r

�
φi

where φi is some unimportant phase associated with each term due to the
linear shift x0.

Now we can measure and retrieve kN

r
for some integer k!

Step 3 Now we repeat the algorithm to retrieve several distinct multiples
of N/r. Once we have enough values, we can compute their GCD to retrieve
N/r. N is a given in the problem, so it is easy to compute r. Computing
GCD is easy thanks to Euclid’s algorithm.

How long should we expect this to take? Let us compute the chance of
finding the correct period after t samples. Suppose after finding t distinct
multiples of N/r, we have not found the desired period N/r, but instead a
multiple, say λN/r. This means that each of the t samples must be a multiple
of λN/r. There are exactly N/(λN/r) = r/λ multiples of λN/r, and since
there are r multiples in total, the probability of getting a multiple of λN/r is
1/λ. Therefore,

Pr[gcd is a multiple of N/r] =

�
1

λ

�t

≤

�
1

2

�t

,

and we err with probability

Pr[gcd > N/r after t samples] ≤ N

�
1

2

�t

.

Therefore we must repeat the period finiding circuit O(logN) times to be
confident in our solution.

The above algorithm can be summed up by the circuit:

|0�

|0� |f(x)�

QFTM

Uf

QFTM

Figure 5.8: Circuit for period finding
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Example

In this example we find the period of the function f(x) = x (mod 2). It is
easy to see that the period of this function is r = 2

We will use a 3-qubit system so that N = 8. It is a good rule of thumb to
choose N � r. The first step is to apply the quantum Fourier transform:

|0� |0�
QFT8
−→

1
√
8

7�

x=0

|x� |0�

Next we apply our function.

1
√
8

7�

x=0

|x� |0�
Uf
−→

1
√
8

7�

x=0

|x� |x mod 2�

The next step is to measure |f�. Then |f� must collapse into either |0�
or |1�. For the purpose of demonstration, lets say our measurement returns
|f(x)� = |1�. Then x must be odd.

1
√
8

7�

x=0

|x� ⊗ |f(x)�
measure|f�

−→
1

2
(|1�+ |3�+ |5�+ |7�)⊗ |1�

Now we need to extract the period of the first register without the obnox-
ious linear shift. So once again we apply the Fourier transform.

1

2
(|1�+ |3�+ |5�+ |7�)

QFT8
−→

1
√
2
(|0� − |4�)

Note: If instead of measuring |f� = |1� we had measured |f� = |0�, there
would be a different linear shift. But the properties of Fourier transform dic-
tate that this only effects the phase of the Fourier transform. In other words,

that last step would have looked like 1
2(|0�+ |2�+ |4�+ |6�)

QFT8
−→

1√
2
(|0�+ |4�).

This agrees with what we know about the principal of deferred measurement.

Finally, if we take a few measurements we will be sure to measure both
|0� and |4�. Therefore N/r = 4, and since N = 8, it is clear that r = 2.
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Summary

Now that we understand how the algorithm works, we can write it without
some of the fluff.

|0� |0�
QFTM
−→

1
√
M

�

x∈ZM

|x� |0� (5.1)

f
−→

1
√
M

�

x∈ZM

|x� |f(x)� (5.2)

measure 2nd register
−→

�
r

M

M
r −1�

k=0

|x0 + kr� |f(x0)� (5.3)

QFTM
−→

�
r

M

1
√
M

�

y∈ZM

αy |y� (5.4)

where αy =
�M/r−1

k=0 ω(x0+kn)y = ωx0y
�

k
ωkry.

There are two cases for y:

1. Case 1: y is a multiple of M

r
.

In this case, then ωkry = e2πiry/M = en2πi = 1. So αy =
√
r

M

M

r
= 1√

r
.

This should be thought of as constructive interference due to the final
QFTM .

Note that there are r multiples of M/r. Because
�

r

1
1√
r

2
= 1, we know

that αy = 0 for any y that is not a multiple of M

r
by normality.

2. Case 2: y is not a multiple of M

r
.

We already know that αy must be 0 from the previous case. Furthermore,
note that ωry, ω2ry, . . . are evenly spaced vectors in the complex plain of
unit length around the origin. Summing over these vectors we see that
αy is 0. This can be viewed as destructive interference due to the final
QFTM .

The interference that occurs in the final step is one reason quantum com-
puters are so well equipped for period finding. We call it interference becuase
it is additions in the phase that cause the cancellations.
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5.3 Shor’s Quantum Factoring Algorithm

One of the most celebrated algorithms for quantum computers is Shor’s Algo-
rithm for factoring. The time it takes for a classical computer to factor some
number N grows as a polynomial in N, while the time it takes a quantum
computer grows as a polynomial in log(N).

The reason we focused so much attention on period finding is because the
problem of factoring can be reduced to the problem of period finding by using
modular arithmetic. This isn’t obvious, but we can understand it with the
following two lemmas.

Setup

In modular arithmetic, we call a number x a non-trivial square root of 1
modulo N if x2 ≡ 1 (mod N) and x �= ±1. For example, 2 is a non-trivial
square root of unity modulo 3 because 22 = 4 ≡ 1 (mod 3). It turns out that
if we can find such an x, we can factor N . Furthermore, we can use period
finding to find x. This idea is summed up in the following lemmas.

Lemma Factoring is equivalent to finding a nontrivial squareroot of 1
mod N .

Proof Let x �= ±1 mod N and x2 = 1 mod N . Then x2−1 = 0 (mod N)
so that x2 − 1 is a multiple of N . Factoring, we see that N | (x + 1)(x − 1),
but because x �= ±1 (mod N), N � (x± 1).

Therefore, gcd(N, x+ 1) and gcd(N, x− 1) are factors of N, and greatest
common divisor is easy to compute with Euclid’s algorithm.

Example: Suppose we want to factor the number 15. It is easy to see
that 42 = 16 ≡ 1 mod 15, but 4 �= ±1 mod 15. So 4 is a non-trivial square
root of unity modulo 15. Then gcd(15,5) and gcd(15,3) are factors of 15. Sure
enough we see that 5 · 3 = 15.

Now, all we need to do is find this nontrivial squareroot of unity, and we
can factor whatever number we need. As promised, we can do this with period
finding, specifically by computing the order of a random integer.

The order of some integer x modulo N is the smallest integer r such that
xr = 1 mod N . For example, the order of 2 modulo 3 is 2 since 22 ≡ 1, the
order of 3 modulo 5 is 4 since 32 = 9 ≡ 4; 33 = 25 ≡ 2; and 34 = 81 ≡ 1
(mod 5). Another way to say this is that the order of x is just the period of
the function f(i) = xi mod N .

Lemma Suppose N = p · q, and x ∈ ZN , x �= p, q. Then with probability
≥ 1/2, the order s of x is even, and xs/2 is a nontrivial square root of 1 mod
N.
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The proof of this statement requires results from number theory (Fermat’s
little Theorem, Chinese remainder Theorem) that are outside the scope of this
course, so we will state it without proof. However, it should be intuitive: if
you imagine the order of a number to vary randomly from one number to the
next, you expect the order of a number to be even with probability about half.

Example: Find the order of 2a (mod 63), and use it to factor 63.

1. 2 = 2

2. 22 = 4

3. 23 = 8

4. 24 = 16

5. 25 = 32

6. 26 = 64 ≡ 1 (mod 63)

so that the order of 2 is 6. Note that a quantum computer wouldn’t have to
compute each of these powers, it would simply use the period finding algorithm
described earlier. Now we compute 23 = 8 �= ±1, so that gcd(63, 8 + 1) = 9
and gcd(63, 8− 1) = 7 are factors of 63.

The Algorithm

When finding order using the period finding algorithm, it is important to
use enough qubits. A sensible rule is that you need to use m qubits so that
2m � N2, where N is the number we are trying to factor, because the order
of a random number might be as large as N .

We now have all the necessary tools to carry out Shor’s algorithm. Start by
picking a random number, then use the period finding algorithm to compute
its order. If the order is even, we can use it to find a nontrivial square root
of unity. If the order is odd or xs/2 = −1, throw it out and start with a new
number.

Because we know that the order of x will be even and xs2/ will be a
nontrivial square root with probability at least 1/2, we can be confident that
we will be able to factor N in just a few runs of the algorithm. Because
the time it takes to find the period grows as a polynomial in the number of
bits, and the number of bits grows like 2 logN(by the above requirement), we
expect the time it takes to factor N to grow as a polynomial in logN .
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Here is the circuit for Shor’s Algorithm. It relies heavily on period finding,
and so the circuit looks a lot like the circuit for period finding. The key
difference is that we are finding the period of f(i) = xi, and the number of
bits we need to input is very large.

m : 2m � N2 |0�

|0�
��xi

�

QFTM

Uxi
QFTM

Figure 5.9: Circuit for factoring

Example

Here’s an example that’s a little more fun. Lets factor 119. Suppose we pick
the number 16 to start with.

First, we compute it’s order.

1. 16 = 16

2. 16 · 16 = 256 ≡ 18

3. 18 · 16 = 288 ≡ 50

4. 50 · 16 = 800 ≡ 86

5. 86 · 16 = 1376 ≡ 67

6. 67 · 16 = 1072 = 119 · 7 + 1 ≡ 1

so that the order of 16 mod 119 is 6. Now, we compute 163 ≡ 50.
Gcd(49,119) = 7, so 7 is a factor of 119, and gcd(51, 119) = 17 which is
another factor of 119.


