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1. INTRODUCHON 

An enormous body of radio-frequency (r.f.) pulse sequences has been developedin recent years for 
the purpose of ‘spin manipulations’. Examples include excitation of single-quantum and multiple- 
quantum coherences,“**’ inversion and equalization of spin populations!3s4) and transfer of 

*Present address: Francis Bitter National Magnet Laboratory, MIT NWl4-5122, Cambridge, Massachusetts 
02139, USA. 

JPNMRS 18/z-n 61 



62 M.H. LI~VITT 

information from one coherence to another. (5 - s) Sequences have also been devised for changing the 
effective Hamiltonians under which the spin system evolves, as in homonuclear ~9'~°) and 
heteronuclear (11-23) decoupling experiments. Despite the universal use of pulse excitation in 
modem Fourier transform NMR, until recently the r.f. pulse itself had not been subject to much 
criticism and the following question had not often been asked: is there in fact a better, or a more 
versatile way to manipulate the spin system than by isolated r.f. pulses of constant amplitude and 
phase? 

It is clear that the standard rectangular r.f. pulse may be considered a special case of a general 
irradiation strategy in which both amplitude and phase (or equivalently frequency) are made 
arbitrarily time-dependent. It is likely that in the future a better understanding of modulated pulses 
will lead to the adoption of irradiation schemes quite different from the rectangular pulse familiar 
today. The technology for the generation of r.f. pulses with continuously modulated amplitude and 
phase is starting to b e c o m e  available and shapes with highly intriguing properties have been 
suggested, t24-31) However in this article we will concentrate on a class of less general modulation 
schemes which at the moment are easier to implement and to analyze than the continuous cases. 
Instead of one pulse, simply a series of rectangular Pulses of possibly different durations and phases 
is applied. Such 'composite pulses ~32-5°) are usually designed to perform an equivalent 
transformation of the spin system as an ideal single pulse. However in many cases composite pulses 
may remedy some of the defects of the conventional single pulse by being less sensitive to the precise 
value of the r.f. field, and less demanding on peak power. In addition composite pulses may be 
designed with characteristics quite different from ordinary pulses, for example the ability to perform 
rotations about the z-axis of the rotating frame, ~a5'41~ or to operate selectively within a narrow band 
of r.f. field strengths, t'~3'46'47) 

Perhaps the first recognizable composite pulses are the so-called '2-I  4 '  sequences of Redfield. tS~) 
These sequences were designed to improve the frequency selectivity of a single rectangular r.f. pulse. 
Consider a single weak pulse applied at the frequency of some desired resonance, for example from a 
solute spin system in low concentration. By careful adjustment of pulse power and duration, it is 
possible to arrange that a signal resonating at a slightly different frequency, for example from the 
solvent, is left unexcited. For  a single pulse the adjustment is highly critical and in the case of a 
spatially inhomogeneous r.f. field, the 'nulling' of the solvent resonance is impossible to achieve 
completely. Redfield recognized that a suitable series of pulses could behave better in this respect; 
the null could be made broader and less dependent on r.f. field strength. Recently these 'solvent 
suppression' sequences have been developed further. The one which is now generally agreed to 
behave most satisfactorily is the '1-3-3-1 '  sequence discovered independently by Turned 52) and 
Hore) sa's4) Hore's article ~s~) is referred to as a detailed treatment of solvent suppression sequences. 
We will not refer to them again, except to note that at least in the initial stages of their treatments, 
all of these workers employed a linear approximation of the spin response which allows the 
dependence of excitation on offset from resonance to be estimated by the Fourier transform of the 
pulse sequence. They were successful because this is not a bad approximation for only small 
perturbations of the system. The same applies to the 'DANTE'  sequence ft, r selective excitation by a 
chain of short, evenly-spaced pulses developed by Morris et al.. iSs) Again it can be shown that for 
small perturbation, the true frequency response corresponds rather closely to the Fourier transform 
of the excitation. 

Linear response theory becomes less useful as a basis for design of a pulse sequence once large 
perturbations of the spin system are performed. The true frequency response of a 90 ° pulse, as 
calculated from the Bloch equations, still resembles the Fourier transform of the excitation quite 
closely, but  strong deviations are already observed for 180 ° pulses. ~3°) For  flip angles of more than 
180 ° the linear response of the system bears little resemblance to the true behaviour. In cases like 
heteronuclear decoupling, where many Complete rotations are applied, use of Fourier arguments is 
completely false. Indeed decoupling sequences based on fallacious spectral arguments are now being 
superseded by composite pulse cycles which use an accurate calculation of the spin evolution well 
outside the linear regime. " ~ -  :a) 
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For spin systems in isotropic liquids, where spin-spin couplings are small, it is relatively easy to 
determine the response far outside the linear regime. If relaxation is neglected, the effect of the r.f. 
pulse is to rotate the magnetization vector (or generally, the spin density operator) about some axis 
in the rotating frame dependent on the r.f. field strength, the offset of the carrier frequency from 
resonance, and the phase of the r.f. field. The precise dependencies are well-known and will be given 
below. The important point here is that the spin system experiences a rotation in a three- 
dimensional space, which is usually relatively easy to visualize without the help of the linear 
approximation. It becomes possible to start putting several rotations together in carefully-chosen 
combinations to cancel out each other's deviations from ideality, a possibility suggested by the 
use of error-compensation schemes in multiple-spin echo ~56) and multiple-pulse homonuclear 
decoupling experiments: ~ o~ 

At first sight however, it does seem unlikely that a small number of pulses can be made to cancel 
each other's imperfections. With hindsight, it may be made to seem more probable by noting that 
since rotations form a group, any given rotation can be produced by an infinite number of possible 
combinations of other rotations. Amongst this multitude ofavays of doing exactly the same thing, it 
is likely that there are some which behave better than a single rotation if each is subject to the same 
non-idealities. For  example, the single rotation 1800 and the composite rotation 909018009090 are 
equivalent if all rotations are ideal. (The notation is used in which fl~ denotes a rotation though an 
angle fl about an axis in the xy-plane, at an angle th from the x-axis.) It may be shown t34~ that if all 
rotation angles are slightly increased in the same proportion, then the composite sequence remains 
equal to a rotation through 180 ° about an axis in the xy  plane, which is the really important 
characteristic of a 180 ° pulse. In contrast the single rotation no longer has this behaviour. In this 
case the deviation could be produced by an inhomogeneous r.f. field. 

It is interesting to reflect that self-compensation of errors in rotation angles may only occur in the 
regime of non-linear response (large flip angles). In a linear system, in which response is 
proportional to excitation, two pulses can only be worse than one. 

The possibility of self-compensation in the non-linear regime is illustrated more graphically 
in Fig. 1, which shows a numerical simulation of the effects of the three rotations (90-6)90 

Z 

Y 

FIG. 1. Tracks traced out on a unit sphere by a family of vectors undergoing the rotations 
(90-6)9o(180-26)o(90-fi)9o. where 3 varies between 9 ° and 18 °, such as might be produced by the sequence 
909018009090 in an inhomogeneous r.f. field. The vectors attain final positions much closer to the -z-axis than 
they would have done after a single (180-26)0 rotation. Hence the sequence 909018009090 provides an NMR 

population inversion compensated for r.f. inhomogeneity. 
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(180-26)0(90-6)9o on a family of vectors experiencing a range of r.f. fields, t32) It is clear that when 
6 =  0, the central rotation does nothing and the vector passes cleanly from the z-axis to the -z -ax is ,  
corresponding to NMR population inversion. The self-compensatory properties of the three 
rotations are revealed by following the trajectories for small 6. The first rotation takes all vectors in 
the z x  plane from the z-axis towards the x-axis. The vectors land short of the x-axis, however, 
because of the deviations 6. The next rotation is about the x-axis through the angle 180 ° - 2 6 .  Were 
this rotation exactly 180 o , all vectors would be brought into mirror  image positions with respect to 
the x y  plane, and then the final rotation (90-J)9o would take them all exactly to the - z -ax i s  with all 
non-idealities 6 compensated. Of  course the central rotation is also actually non-ideal,  but the effect 
of  the discrepancy is not  too large if 6 is small, as is evident in Fig. 1. This is because at the end of 
the first rotation the vectors are near the x-axis anyway, so the deviation in the 180 ° rotation can 
only make its presence felt on the small component  which is perpendicular to that axis. This is a 
higher-order effect. The result is that the family of vectors tend to cluster at the - z-axis, and that the 
pulse sequence 909018009090 provides a population inversion rather insensitive to small deviations 
in the rotation angles. 

In Fig. 2 it is shown that the same sequence also provides some compensation if the non-idealities 
produce instead a ' tilt '  in the rotation axes towards the z-axis. This is the case if the pulses are 
applied off-resonance. The simulated magnetization vectors correspond to resonance offsets in the 
range 0.4 <ft /co°<0.6,  where f~ is the resonance offset and co o the r.f. field strength. Off-resonance 
effects cause an increase in the rotation angles as well as a tilt of  the rotation axis, which is also 
taken into account in Fig. 2. The effect of the three tilted rotations is less easy to visualize than in 
Fig. 1, but it is apparent that for this range of O/co °, the vectors also 'bunch '  at the -z-axis .  Hence 
the sequence 909018009090 also provides a 'b roadband '  population inversion, i.e. a population 
inversion less sensitive to resonance offsets than that produced by a single pulse. In fact the 
population inversion is reasonably accurate for all offsets in the range - 1.0 < l)/co ° < 1.0. 

More recently, much effort has been put into elucidation of the principles of such compensation 
and for producing more general and more effective composite pulses, suitable for arbitrary 
manipulat ions of the spin system in the presence of more general non-idealit ies and starting from 

Z 

FIG. 2. Tracks traced out on a unit sphere by a family of vectors undergoing a sequence of rotations about tilted 
axes, such as produced by the sequence 909018009090 in the presence of off-resonance effects in the range 0.4 < 

f~/co ° <0.6. The population inversion is again much more ideal than it would be after a single 1800 pulse. 
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more general initial conditions. Much progress has been made, but not all problems have yet been 
solved. The problem of designing a composite pulse which implements a constant net rotation of any 
initial condition under arbitrary pulse imperfections has not yet been solved using an acceptably low 
number of pulses. Were this not the case, the task of writing this review would have been much 
simpler. As it is, compromise solutions must usually be found according to the degree of knowledge 
of the initial condition of the spin system, the tolerance of the pulse sequence to particular types of 
deviations of the rotations from ideality, and the predominant pulse imperfections which are known 
to exist. 

Emphasis will be given to the theoretical aspects of composite pulses, although some practical tips 
will also be given. This is only in part due to the personal interest of the author. The fact is that 
composite pulses have not yet been widely used for the application for which they were first 
intended, error compensation of general pulse experiments in high-resolution NMR. So far the 
widest use has been in techniques which, though of importance, are essentially 'spin-offs' like 
broadband heteronuclear decoupling. One can identify many reasons for this. In the first place, 
commercially available spectrometers have been, and to some extent still are, poorly equipped to 
handle composite pulses. Accurate r.f. phases are vital for the proper operation of composite pulses, 
yet in the past most instruments used a method of generating phases by routeing signals through 
separate pathways having different propagation times, invariably leading to problems of phase 
inaccuracies and amplitude imbalance. Another important factor blocking the use of composite 
pulses has been unsatisfactory pulse programming facitilities, making it inconvenient or impossible 
to implement complicated multiple-pulse sequences. Both of these technological problems are at last 
showing signs of being recognized and dealt with by the manufacturers. Digital phase shifters have 
been introduced, ~57'5s~ in which the carrier follows a unique signal path, allowing phase errors or 
amplitude imbalances to be eliminated, and somewhat more versatile pulse programming hardware 
and software is more usually available. 

However, technological difficulties are not the only reasons why so far composite pulses have not 
been much used. There are conceptual difficulties. Compensation schemes have often not been based 
upon unified principles, requiring careful analysis in order to compensate a given pulse sequence. It 
is not usually possible to 'throw' composite pulses into a pulse sequence and expect them to work. 
Only recently has it become possible to design procedures with a high degree of generality, as will be 
shown below. Thus one of the main motivations for this article is to gather together the various 
theoretical approaches for design of composite pulses and to show the relationship between them. 
Sometimes the desire to concentrate on the main principles and to present a unified picture has 
caused the omission of some interesting and perhaps useful composite pulses which in retrospect 
seem to have a mainly 'historical' significance. I have also readily changed the phases or reversed the 
order of some of the composite pulses which have already been published when this allows them to 
be fitted more readily into some conceptual framework. Experimental results are shown only for 
cases where the outcome may be in doubt; I have not shown experimental verifications of the more 
trivial transformation properties of composite pulses, which can be found in the original literature. 
For convenience, I have taken the illustrations from my own work, many of the results shown here 
having being produced specifically for this article. 

The organization of the subject matter is as follows: In Section 2 the basic theory of single r.f. 
pulses is given briefly, mainly for the sake of establishing notation and concepts for the following 
Sections. In Section 3 the major theoretical approaches for the design of self-compensating pulse 
sequences in the high-resolution NMR of isotropic liquids are presented. The discussion may be 
found rather mathematical for many readers, who may like to skip this Section. In Section 4 the 
various composite pulse sequences are reviewed, not this time in terms of their principles of 
construction but more in view of their properties and limitations. A classification of composite 
pulses on the basis of the type of rotations they produce will be suggested. The classifications A, BI, 
B2 and B3 for different sorts of composite pulse will be introduced and used to explain under which 
conditions composite pulses may be inserted into a given pulse sequence. In this Section, different 
sequences are also compared by means of numerical simulation. In Section 5 some practical 
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applications of error compensation in high-resolution NMR are discussed. In Section 6 a few 
practical hints as to how composite pulses can be implemented are briefly given. In Section 7 some 
recent 'unorthodox' applications of composite pulses are touched upon, including the use of 
rotations about the z-axis, the possibility of achieving spatial selectivity by exploiting r.f. field 
variations, and the compensation of sequences for variations in coupling constants. In Section 8 the 
special problems of composite pulses in anisotropic systems are presented. Some closing remarks are 
given in Section 9. 

2. THEORY OF SINGLE PULSES 

2.1. Pulse Propagators; Conventions 

In most of this article we discuss the case of NMR in isotropic liquids, where spin-spin couplings 
are weak and it is easy to dominate them by applying an r.f. field. The subject of composite pulses in 
solids o r  anisotropic liquids, where spin-spin couplings are often the principal source of pulse 
imperfections, is dealt with separately in Section 8. 

Considering for simplicity a homonuclear system of spins Ik, the rotating-frame Hamiltonian in 
the absence of r.f. irradiation may be written 

fI  o = ~kl']fl~. + Ejk2lrd #|j'Ii, (I) 

and in the prcscncc of an r.f. field of phase $~ and frequency ¢o by 

Hp = Ho + Ha 
nrf = ¢o1 ~_.~lk'nc~p (2) 

where 

lk = l~ex + lky% + lk, ez 

and n,p = excosq~p + eysin~bp. (3) 

Here ~k is the resonance offset of spin Ik, defined flk = a~0k --~, where COOk is the Larmor frequency of 
spin I k, Jjk are spin-spin couplings, co 1 is the nutation frequency around the rotating-frame r.f. field, 
and ex,ey and ez are unit vectors along the rotating-frame x~v, or z-axes. 

The density operator a of the spin system evolves during the pulse according to the Liouville-von 
Neumann equation, neglecting relaxation 

~= - i[h'p,~]. (4) 

If the pulse is exactly rectangular, meaning the r.f. field rises from zero to its full valuc 
instantaneously at the beginning of the pulse and decays to zero instantaneously at the cnd, and its 
phase is constant throughout, then Hp is time-independent, and cqn. (4) can be integrated over thc 
duration rp of the pulse: 

a(t+ ~p)= Upa(t) V~, (5) 

where 

Up = exp( - iHpzp) 

and Up* = exp( + iHpzp). (6) 

The operator Up is called the pulse propagator, and describes the effect of the pulse on arbitrary 
initial conditions a(t) through eqn. (5). If a sequence of pulses is applied, for example three pulses of 
durations zl, z2, za, and possibly different phases or r.f. amplitudes, the overall evolution of the 
density operator may be evaluated stepwise 

a(t + zl + z2 + *a)--- U123a(t) U~23 (7) 
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where 

U123 = U3 U2 U1. (8) 

The properties of a pulse or sequence of pulses may be discussed either in terms of the 
transformations it produces of particular initial conditions [eqn. (5)], or in terms of its propagator 
U [eqn. (6)] which contains the information as to how the pulse transforms all possible initial 
conditions. In this review, but in contrast with many previous papers, the propagator is considered 
to act from the left, in order to bring the treatment into line with literature in other fields. It should 
be remembered therefore that chronological order runs in pulse sequences from left to right, but in 
their propagators from right to left. 

It is convenient to mention at this place some other conventions. Firstly, we assume throughout 
that all frequencies such as flk,o91, etc. are positive, unless stated otherwise. With this convention, 
successive ideal 900 rotations take a vector through the positions z -*-y - -~-z - -~y  etc. Secondly, 
concerning the sign of offset terms f2k, we hold to the convention that positive offsets Dk are 
associated with resonances on the right-hand side of the carrier in a conventionally presented 
spectrum with quadrature detection. This is in fact true for nuclei of positive gyromagnetic ratio. 
(Nevertheless the behaviour of a pulse sequence at a particular offset will only conform to that 
predicted if the sense of rotation of the r.f. phases is correctly assigned. A way of checking this latter 
point is to take a spectrum using a single 900 pulse and phase-correct it to pure positive absorption. 
Then take a spectrum with a 909o pulse and apply the same phase correction. The lines should 
appear in pure dispersion with the negative tail on the right. If the negative tail is on the left, this 
indicates an incorrect sense of rotation of the phase.) 

Further nomenclature concerns the notation for pulse sequences. It is probably impossible to 
produce a notation which is usable in all contexts. We denote pulses here by (flv)~,,° where tip° 
indicates the pulse duration zp in units of the inverse of the prevailing ('nominal') r.f. field strength 
to o in the sample, 

flpO = cox °Tv, (9) 

and (kv is the r.f. phase. ~o is often referred to as the 'nominal flip angle', a useful but occasionally 
misleading term, since it really refers to a pulse duration rather than an angle. Both flo and q~p will 
usually be given in degrees in this article. When radians are used, they will be given in units ofn. The 
subscripts x,y,-x,etc,  are only useful for the four orthogonal phases and will be avoided. If the 
context demands that a pulse is specifically ideal, this will be indicated by a further superscript o, 
thus 90 o represents an ideal 90 ° pulse of phase ~bp=0. 

Subscripts are used for different purposes. Normally it is clear from the context what a subscript 
means. We will usually keep to the convention that subscripts k ,k ' . . ,  index the spins I k, Ik . . . .  and 
numerical subscripts or p,q,l,m,n.., index the individual pulse elements in a composite pulse. If both 
are used, the pulse index comes first. A missing spin index usually indicates a sum over all spins, for 
example I~ =~.,klk,. Further notation is that n is a unit vector, and n 0 is a unit vector in the xy plane 
at an angle q~ from the x-axis. 

2.2. Ideal Pulses 

The ideal pulse is 
(a) perfectly rectangular, as mentioned above 
(b) employs a perfectly homogeneous r.f. field (co 1 = coo), which 
(c) is intense enough that the interaction of the spins with the r.f. field dominates spin-spin 

couplings and rotating-frame residual longitudinal fields arising from resonance offset effects. 
If these conditions are satisfied, terms other than Ha may be ignored during the pulse, and the 

ideal propagator for a pulse of phase ~bv and duration rv is given by 

U ° = Hkex p { -- ifl~Ik'n~p }. (10) 
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The nominal flip angle given by eqn. (9) may be adjusted by changing either the r,f. field strength oJ ° 
or the pulse duration zp. The propagator given by eqn. (10) may he interpreted as a 'cascade ~Ss) of 
identical, commuting rotations of all spins in the system about the axis n~, r given by eqn. (3). 

The transformations induced by such rotations and their application in high-resolution NMR 
experiments are familiar. Typical transformations induced by ideal 90 ° pulses include: 

(a) conversion of longitudinal into transverse magnetization, e.g. 

9000 
I k z  ) - -  I k r  ( 1 1 )  

(b) coherence transfer processes, as expressed in terms of Cartesian product operators 16°) by such 
transformations as 

900 
2lkzlk,y . . . .  2 I  kflk, z 

900 
2Ikflk. x - ~ -- 21kylk,x 

or in terms of single element product operators (61'62) by transformations like 

(12) 

+ a l  
l k l k  

900 
, ¼ { I  + al + ~ • + + . + - klk,+lklk,+dkI k,-dkl  k, 

+I;I~.+IH~.+ il;I~.-iI;I; .  
at i" ~ l a t l +  _ _ l a t l  - 

+ i l k l k ' + i l k l ~  ,--  " k ' k "  " k ' k '  

- - i l  kal ; ,  - - i l  kal ka, + I kPl : ,  -- I kal k , } (13) 

Typical transformations induced by 180 ° pulses include 
(a) inversion of longitudinal magnetization 

Ikz 18000 -' --Ik~, (14) 

(b) phase reversal of transverse magnetization 

lk- % -- 180° , Ik'n_~,, (15) 

(c) interchange of spin states link) with 1-m~), e.g. for a system of two spins-I/2, in terms of single 
element product operators, (6j'rz) 

l ' ~ I k ,  1800 , IklPk . (16) 

Pulses with flip angle of other than 90 ° or 180 ° are also often employed. For example, pulses of 
small flip angle /~°,~1 radian are frequently used to transfer phase information from a given 
coherence Ir)(sl specifically to connected coherences [r)(s'[ and Is')(rl, where Jr), Is), It') and Is') are 
eigenstates of the whole spin system. (5'6) Also 45 ° pulses are useful in converting longitudinal 2-spin 
order to observable single-quantum terms (63"64) 

2lkf lk ' ,  45° ~" ½ ( 2 I j k , ,  -- 2lkylk,,  -- 2IkzIk'y + 21kyIk'y) 
(17) 

2.3. N o n - I d e a l  Pulses  

In practice, instrumental limitations often prevent the conditions mentioned in Section 2.2 from 
being met, causing the pulse propagator to deviate from its ideal value, eqn. (10). 
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(i) R.f. inhomogeneity. The type of imperfection which is easiest to analyze arises because the r.f. 
field inevitably varies from place to place throughout the sample volume. The spatial variation of r.f. 
fields produced by various coils has been examined theoretically ~6~ and may be determined 
experimentally using a version of two-dimensional spectroscopy, t6'66~ If the true r.f. field at a given 
place is o) 1 rather than the nominal value o~ °, but is still large enough that H,f dominates Ho in eqn. 
(2), then all spins still experience rotations about the same axis nep, but through a spatially dependent 
angle o o tip= flptol/o21, rather than through the nominal flip angle flo. R.f. inhomogeneity effects are 
often small in normal high-resolution NMR systems, but are of increasing importance in large- 
sample studies and NMR imaging. 

The deviation of r.f. field e~l from the nominal value to ° is usually quantified by the parameter  
6t~l/e~ °, where 6oJ 1 = co I _~0.  

(ii) Phase errors. It is also possible that the true phase ~p of the r.f. pulse differs from the 
intended phase because of instrumental defects. However, recent technical improvements such as the 
introduction of digital phase shifters 15v'Ssl have eradicated this as a long-term problem so phase 
errors will not be further considered in this work. Accordingly one should be aware that unless very 
accurate r.f. phases are known to be available, the recommendations of this article could be 
inappropriate. In fact many composite pulses may be viewed as converting accurate r.f. phases (i.e. 
accurate rotations around the z-axis) into accurate rotations around other axes such as x or y. 

(iii) Pulse shape errors. All of the above equations assumed a perfectly rectangular pulse where 
the r.f. field rises instantaneously from zero at the beginning of the pulse and decays instantaneously 
at the end, and keeps constant phase throughout. In practice, transients are inevitably encountered 
at the beginning and end of each pulse which originate from the finite frequency bandwidth of 
transmitter and probe. They are manifested as a rounding of the pulse shape and phase disturbances 
during the rising and falling edges. 167) For normal circuits the transients have duration about l#sec, 
and can often be ignored if a 90 ° pulse has duration around 10/~sec or more. The effects are 
troublesome in solid-state NMR where shorter pulses must often be created. In liquids, where the 
spread of resonance frequencies is usually smaller, longer pulses can be tolerated where the effect of 
transients is small. For  most of the rest of this paper phase and amplitude transients are therefore 
ignored. It is therefore advisable never to use more pulse power than is necessary to perform the 
experiment. This recommendation is valid whether or not composite pulses are used. 

(iv) Off-resonance effects. If H~f does not greatly exceed Ho, the simultaneous influence of these 
two non-commuting terms must be taken into account. If internal spin-spin couplings may be 
ignored during the pulse (which is usually the case), the propagator still factors into a cascade of 
commuting rotations on all spins I k in the system, but the rotations on each spin are no longer 
identical and occur about tilted axes np,k not in the equatorial plane of the rotating frame, IIp,k'e z ~=0. 
Also the rotation angles flp,k are larger than the nominal flip angle flo. 

Taking into account both off-resonance and r.f. inhomogeneity effects, the propagator for a pulse 
of phase q~p and nominal flip angle flo is given by 

Up= IlkeX p { --iflp,kIk'np,k} (18) 
with 

flp.k=(O~l/oO)flO[1 + (fk/~l)2-] 1/2 

n~.k = ezcos0k + exsin0kcos~p + eysinOksindpp 
and 

tan0k ---- 031/fiR. (19) 

The rotation on each spin I k is determined by the rotation angle flp,k and the polar angles Ok and 
~bp of the rotation axis. Here Ok is defined as the declination of the rotation axis from the z-axis, so 
that Ok = 90 ° for an ideal pulse. This definition is also at variance with many previous publications. 
but follows the usual definition of polar angles in mathematics. 

In solids and liquid crystals, the major source of off-resonance effects for spin 1/2 nuclei arises 
from dipolar interactions rather than chemical shift terms. Treatment of these systems will be 
deferred until Section 8. 
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The implications of the imperfect propagator eqn. (18) may easily be worked out for specific 
experimental cases using Cartesian product operators, t6°) It is often convenient to work with the 
alternative form of the imperfect propagator given by 

U v = l-lkex p { - iCplkz }exp { -- iOklk~. }exp { - iflp,kl ~ }exp {iOklkr }exp {iCvIk~ }. 
(20) 

the following transformations have been derived for initial conditions a(O)= lk~,I~,lky (omitting the 
pulse index p for brevity): (6°~ 

lk~ fl~ ' lkz [ COSflksin2Ok+COS2Ok] 

+ Ikx[sinflksin~sinOk + sin 2(flk/2)COS~Sin2Ok] 
+ lky[ -- sinflkCOSq)sinO k + sin 2(flk/2)sin~bsin2Ok] 

Xkz ¢ - -  , lkz[sin2(fl~2)cosc~sin2Ok--sinflksincksinOk] 
+ l~[cosf lk(s in2~ + COS2~CoS2Ok) + COS 2 ~bsin 20 d 
+ Ikyl- sin 2(flk/2)sin2 ~sin 2 ~bk -- sinflkCOSOj 

Iky - -  , I~.[sin2(flk/2)sincksin2Ok+sinflkCOSdpsinOk] 
+ l~,[sin2(flk/2)sin2q~sin20k - sinflkCOSOk] 
+ lkv[COSflk(COS2dp + sin 2q~CoS2Ok) + sin 2~bsin 20 d.  

(2i) 

Transformations of multiple-spin terms such as 2lkzlk,r, etc. or individual coherence terms such as 
I ~ I  7, etc., are easily calculated by taking suitable combinations of the above expressions. 

Some of these transformations are of particular importance. For example, it is well-known that a 
90 ° pulse is rather insensitive to off-resonance effects if judged by its ability to transform z- 
magnetization into the xy  plane. (68) Assuming no r.f. inhomogeneity, o~ 1 = ~o °, the transformation of 
I~ is given by 

lk~ 900 + + - -  ' lkzn kz + ( I k x C O S ~ b k  +lkySindp kX l - - (n  ~z)2)  1'2 (22) 

where the residual longitudinal magnetization n ~z is 

n]z ~ (1 - x/4gf~k/¢O°) z (23) 

evaluated to second order in offset flk/09 °. The phase of the transverse magnetization is given to 
third order in offset by 

(b ~ " - n/2 + f~k/e9 °. (24) 

Thus the phase error generated by a single pulse is linearly dependent on offset to a very good 
approximation, and the residual longitudinal magnetization has only a weak quadratic dependence. 

The sensitivity of the population inversion induced by a 180 ° pulse to off-resonance effects is 
stronger: 

I~ 180o , ~_lkz(_l+2(f f~k/09o)2)+. . .  (25) 

Indeed if the pulse is applied off-resonance, a nominal flip angle fly ° cannot be found for which 
population inversion is ideal. 

The performance of 90 ° and 180 ° pulses with respect to simultaneous r.f. inhomogeneity and off- 
resonance effects will be analyzed in more detail in Section 4. 
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3.1. Geometrical Approach 

Historically the first approach used in designing composite pulses outside the linear regime was 
by following the trajectory of magnetization vectors starting from some given initial condition, 
usually a(0)= lz, and observing visually or by geometric construction how the trajectories may be 
combined in such a way as to cause error compensation. 

The composite pulse 909o180o909o which provides a compensated population inversion, was the 
first to be constructed in this way t32) and its geometrical interpretation has already been discussed in 
the introduction. It is fair to say that by virtue of its brevity and simplicity this prototype composite 
pulse remains one of the most useful. We will meet it again in various guises. 

Further applications of the geometric approach, usually with the assistance of computer 
simulation, produced a stream of composite pulses with different properties over the next few years. 
We will discuss some of these suggestions later on according to their application. However it is 
convenient to mention here two examples of composite pulses compensated for r.f. inhomogeneity, 
because they reveal principles which are interesting in a more general sense. 

(i) The composite pulse 909o90 o was shown to destroy longitudinal magnetization more efficiently 
than a single 90 ° pulse in the case of an inhomogeneous r.f. field and negligible resonance offset. 133) 
The reason is very simple and is shown in the computer simulation of Fig. 3. The first 90 ° pulse 
leaves small longitudinal components of magnetization if the r.f. field is homogeneous. These small 
residual components are rotated nearly into the xy plane by the second 90 ° pulse, whilst the desired 
x-magnetization commutes with the second rotation and is unaffected. In the absence of off- 
resonance effects, the residual z-magnetization is easily evaluated to second-order in 6o91/co°: 

( Iz)  +''(rcftnl/2co°) 2. (26) 

The quadratic dependence is often referred to asfirst order compensation. 
(ii) The composite pulse 90180180300 was shown to destroy longitudinal magnetization in an 

inhomogeneous, on-resonance r.f. field more effectively still than the previous pulse, t361 This 

Z 

y 

FIG. 3. Tracks traced out by a family of vectors experiencing on-resonance r.f. fields in the range 0.8 <o~l/to ° < 
1.0 during the sequence 909o90o . The destruction of z-magnetization is compensated for r.f. inhomogeneity. 
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sequence was constructed by a geometrical argument in which the form of the ideal trajectories at 
the end of the first pulse and the beginning of the second was examined. Compensation of r.f. 
inhomogeneity occurs if the ideal trajectories are 'anti-tangential', meaning that at the junction of 
the two pulses, the magnetization vector exactly reverses its sense of rotation, and if also the arc 
lengths of the two trajectories are equal. These conditions may be given a more mathematical 
flavour by the requirement: ~36) 

[flOl.nO ' a(rl)o] _ [flOl.nO ' a(zl)°] = 0 (27) 

where a(ra) ° is the ideal density operator at the junction of the two pulses: 

a(2.1)° = uo~(0) uo,.  (28) 

For the pulse given above, 0(0)= I,, flo= x/2, nO= n~, flo= n, nO= ns~/3, and the condition eqn.(27) 
may be shown to be fulfilled, as is demonstrated pictorially in the computer simulation of Fig.4. The 
residual z-magnetization has a cubic dependence on r.f. inhomogeneity 3ml/co °, so the sequence is 
said to enjoy second-order compensation with respect to destruction of longitudinal magnetization. 

Further development of these geometrical arguments led to a wide range of composite pulses with 
more highly compensated transformations of the initial condition. As examples of the more baroque 
developments we show in Fig.5. computer simulations of magnetization vector trajectories for (a) so- 
called 'spin-knotting' sequences t33~ 

0 0 0 
(ill)180--2"1 ~(f12)O--2.2~(f13)l 8 0 (29)  

where fl°=10°, fl°--60°, i~=140  °, and 2.i represent small intervals of duration r1=0.8~/co°, 
r2 = 0.22n/co°; the sequence (29) provides a transformation lkz---~lky rather insensitive to offset effects, 
and (b) the sequence ~36) 

45909018090270451801802704518090909018045270 (30) 

which provides a population inversion lkz--*--Ikz highly compensated for r.f. inhomogeneity. 

FIG. 4. 

Z 

Y 

Tracks traced out by a family of vectors experiencing on-resonance r.f. fields in the range 0.8 <ah/co°< 
1.0 during the sequence 901 so180, 20. The rotation axis during the second pulse is indicated. 
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FqG. 5. Exotic suggestions for composite pulses (a) 'Spin-knotting' sequence [eqn.(29)]; the plot shows the 
evolution in time of the locus formed by joining together the tips of a family of vectors experiencing off- 
resonance effects in the range -0.5 < f~/co~ <0.5, taken at equal time increments through the second pulse in the 
sequence. Such plots are sometimes of assistance in gaining a physical insight into error compensation (from 
Ref.33). (b)Tracks of magnetization vectors experiencing on-resonance r.f. fields in the range 0.8 <o~1/o~°< 1.0 
during the 9-element composite 180 ° pulse given in eqn.(30). Highly compensated sequences such as this may be 

created with a combination of geometrical arguments and symmetry properties (from Ref.36). 

3.2. Propagator Compensation; Magnus Expansion 

The geometrical approach has the advantage of providing a strong physical picture of how 
error compensation works. Its disadvantages are that it is limited by the number of consecutive 
rotations which can be visualized, and that it is only easily possible to compensate the effect of a 
pulse sequence on a particular initial condition, usually a magnetization vector along the z-axis. The 
transformations of other initial conditions cannot easily be compensated at the same time and may 
not even suffer the desirable transformation under ideal conditions. For example, consider the 
sequence 909o900 which was shown above to provide a transformation of z-magnetization lz into 
the xy plane insensitive to r.f. inhomogeneity effects. In the absence of non-idealities it transforms lz 
to Ix and so might be thought to be equivalent to a 909o pulse. That this is not the case is 
demonstrated by applying the sequence to another initial condition such as ~(0)=I r A 9090 pulse 
would leave ly unchanged but 9090900 transforms Iy to I z. Thus the sequence 90%0900 may not be 
used to replace 909o unless the initial condition is known to be I~, or if special preca~ations are taken 
which are described later. 

A way to ensure that not only the transformation of one particular initial condition is 
compensated, but also all the transformations of all possible initial conditions, is to concentrate on 
the compensation of the pulse sequence propagator Up. If it can be ensured that U p-  ~ U ° over a 
range of imperfections, where U ° is the ideal propagator, then the pulse sequence may be used to 
replace the single pulse in all contexts. 

As it is difficult to follow pictorially the transformations of all initial conditions at once, a more 
mathematical approach is indicated in this case. A suitable framework is provided by coherent 
averaging theory (also known as average Hamiltonian theory), which has been heavily used for high- 
resolution NMR in solids39'1°) 

We have already seen that for a time-independent Hamiltonian, the equation of motion (4) may be 
integrated over a time t to find the pulse sequence propagator U(t), eqn.(6). During a pulse sequence, 
the Hamiltonian is only piecewise time-independent, so the propagator may be written as a product 
of terms for each pulse in the sequence, eqn.(8). This product of many non-commuting terms is not 
very meaningful unless the algebra of the operators can be used to reduce the product into a single, 
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informative term. A way to do this in the special case of many consecutive rotations is in fact shown 
in the following Section. In this Section, a different direction is taken, which is to view the 
composite pulse as a special case of some time-dependent Hamiltonian H(t) and to use an 
approximate expression for the integrated evolution operator. An appropriate expression is 
provided by the Magnus expansion. The integrated propagator for evolution over a time t under the 
time-dependent Hamiltonian H(t) may be expressed 

U(t)---- exp { - ilq(t)t }, (3 I) 

where the effective Hamiltonian l~(t) is given as a power series in t: 

/q(t) =/i~°)(t) +/4(x)(t) + . . . (32) 

and 

H<°t(t) = t -  1 ~t ° dt'H(t') 

/-/re(t) = (2it)- fI~dt'I~' dt"[H(t'),H(t")] (33) 

Higher order expressions for H~2)(t) etc., are given in Ref.(9,10); In general, H~)(t) is proportional to 
t m. 

This expansion is useful only if the series converges, so that higher order terms may be neglected. 
Conditions for convergence have been discussed in several places/94°,3°.69) The condition most 
usually quoted, which, however, is not completely strict, (69) is that ]]H(t')tl[,~l, which demands 
loosely that the duration over which the averaging is performed should be small enough that the 
Hamiltonian term H produces only a small change in the state of the system (weak perturbation 
case). Now it is clear from this that the Magnus expansion is not directly applicable to most pulse 
sequences, since the density operator changes very much throughout the sequence. However, this 
impasse may be avoided by a trick. Suppose the Hamiltonian can be divided into a 'big' part and a 
'small' part: 

H(t) = Hbt,(t ) + H,m,n(t ) (34) 

where usually the big part is 'simple and uninteresting' and the small part is 'complicated and 
interesting'. It is possible to pass into an interaction frame in which one 'moves with' the evolution 
due to the big part alone, so that this motion no longer affects the convergence of the expansion: 

#(t)= Ubis(t)*a(t)Ubis(t) (35) 

ff-l,m,n(t) = Ubts(t)*H,m,n Ubi~(t) (36) 

and 

b (t)= -i[B,=.n(t), 0(t) ] (37) 

In the interaction frame, most of the Hamiltonian is removed leaving only a small part H,,..,~(t) 
given in eqn.(36). If H,mu is small enough, the Magnus expansion now converges. Taking only the 
zeroth-order term in the expansion, the evolution of the density operator in the normal frame may 
be evaluated: 

a(t)= U(t)cr(O)U(t)* (38) 

where 

and 

U(t) = Ubl,(t) fJ.=.,,(t) 

• - ( O )  U,mn(t)-~ exp { - tH.m.n t }, 

(39) 

/_~o~.  t_=I ;  , ~  , ,,~, dt H,mu(t ) (40) 
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The main difficulty in using the Magnus expansion is to find the proper choice of the interaction 
frame which will ensure convergence. In high-resolution NMR in solids, 19a 0) it is usual to choose for 
Hbi s the pulse sequence perturbations and for H,.,~ n the internuclear dipolar interactions and 
resonance offset terms; in heteronuclear decoupling in liquids, t11-15) the r.f. terms and chemical 
shifts have been taken together into Hbt,, leaving the heteronuclear coupling in H.=.n; in the 
presence of large resonance offsets it is even possible to have the r.f. pulse sequence in H,=an and the 
offset in Hbi.. (3°) We discuss here the choice made by Tycko et al., (44'45'4s) of having for Hbi 8 the 
Hamiltonian for an ideal pulse, and allowing H,=~n to include the residual Hamiltonian terms which 
may be held responsible for imperfect functioning of the pulse. 

With this choice eqn. (39) has the following interpretation: Ubiw(t) represents the propagator of an 
ideal pulse sequence. In the presence of non-idealities, this rotation should be preceded by a small 
rotation U~=an(t) of the initial condition. This rotation may be calculated through the average 
Hamiltonian ,ra(°),,=,~, which represents the time-average of the pulse imperfections throughout the 
sequence, in the interaction frame. It is important to note the definition of the interaction frame, 
eqn. (35)as the frame which 'goes with' the motion induced by the ideal pulses. One may visualize 
this by 'sitting on' a magnetization vector and observing the rest of the world from this rotating 
reference point: If the rotations do not commute, this looks quite different to watching, from a static 
reference frame, the motion of a magnetization vector undergoing the same sequence of rotations. 
For example, the positions occupied by a vector starting at the z-axis under a sequence of rotations 
9009090 is z - - - * - y ~ - y ,  but the positions occupied by the z-axis as viewed from the interaction 
frame are z---*y--*-x. 

The operation of coherent averaging theory is easiest to visualize in calculating the performance 
of pulse sequences as a function of resonance offset, since in this case H.=,.(t) is time-independent: 

H.m.n(t) = 2k~ ' )k  Ikz (41) 

Its motion in the interaction frame may easily be calculated. For example, consider a single 
1800 pulse: 

ft,=,l,(t') = Ek~k(lkzCOS(ogOt ') + lkySin(toOt')) (42) 

Therefore 

using toot = n. 

l..l(o) _ o .m,n(t)t- ~k( ~k/tol )l ky (43) 

The density operator after a 180 ° pulse applied to initial z-magnetization is therefore given 
approximately by eqn. (39): 

~kIk= U.=.n(t) ' ~,k {Ik~COS(f2k/to°) + lk~Sin(flk/toO) } 

1800 ' Xk { -- lkzCOS(Dk/to°) + lkxSin(Dk/to°) } (44) 

which is in agreement with eqn.(21), to first order in offset (f~k/to0). Of course this result is not too 
interesting for a single pulse but the arguments are readily extended to pulse sequences which are far 
too complicated for exact calculation. One only has to derive the motion of the interaction frame, 
which is not completely apparent in complicated cases, but is certainly calculable. 

Coherent averaging theory may be used for designing composite pulses by setting ,ra~°),.=.,, and 
hopefully also H ~ , . ,  close to zero, for the pulse imperfections embodied in the perturbation Hm,.,(t). 
The technique is to develop a set of simultaneous equations, with the pulse lengths and phases as 
variables, which define the conditions under which the various orthogonal components of ~("~ • • s m a l l  

vanish. The equations are normally too difficult to be solved analytically, and numerical searches for 
an approximate solution must be conducted. 
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Tycko et aL (44'48) have devised a whole series of composite pulses on this basis. Sequences which 
have/-I (°) a n d / 4  (1) close to zero for off-resonance effects are the composite 90 ° pulse 

3850320180250 (45) 

and the composite 180 ° pulse 

3362T24620710117742871011724620733627 (46) 

For r.f. inhomogeneity, H(O) and H(1) are made small by using the composite 90 ° pulse 

270180360349180213180358170z] (47) 

and the composite 180 ° pulse 

18025 s 180018010536031,, (48) 

where the phases have been adjusted so that the sequences produce overall rotations about the x- 
axis, and a 'supplementary z-rotation' has been introduced in sequence (47), indicating that the 
phases of all following pulses must be adjusted by - 7 0  ° if the composite pulse is to behave 
equivalently to 900 (see Section 4). 

It is not immediately obvious how these sequences work 'physically' compared to the composite 
pulses described earlier. But they have the advantage that they may be applied without regard to the 
initial condition of the density operator and without thinking about the context of the pulse in the 
pulse sequence. This is a very important advantage, since it greatly simplifies the task of 
compensating a pulse sequence. However the pulses so far suggested do have some drawbacks which 
arise from their method of construction. Firstly, those compensated for r.f. inhomogeneity tend to 
have unusual phases--not an insuperable difficulty, but an inconvenience. Secondly, those 
compensated for off-resonance effects tend to have a rather modest range of compensation, although 
within that range they are very accurate (Section 4); the slow convergence of the Magnus expansion 
makes it difficult to extend the range of compensation of errors without greatly increasing the length 
of the sequence. Thirdly, the sequences tend to be rather sensitive to simultaneous r.f. inhomogeneity 
and resonance offset effects. Fourthly, a separate numerical optimization of pulse lengths and phases 
must be performed if it is required to create pulses having rotation angles different from 90 ° or 180 ° . 

These drawbacks of the Magnus expansion pulses make it worthwhile considering if full 
compensation of the propagator is in fact necessary in the majority of experiments, and if a power- 
series expansion around a point of ideal behaviour is the most appropriate means of designing a 
pulse sequence for which brevity and bandwidth play at least as important a role as accuracy. The 
rest of this Section concerns composite pulses designed by a different approach, which although 
not enjoying full propagator compensation, have propagators compensated well enough for most 
requirements, whilst being rather short and easy to apply. The relative merits of the various sorts of 
composite pulse, and the situations in which it is possible to tolerate less than full compensation of 
the propagator, will be discussed further in Sections 4 and 5. 

3.3. Theory of  Non-Commutin 9 Rotations; Similarity Transformations 

Given one rotation through an angle/~1 about an axis nl, followed by a second rotation through 
an angle/~2 about an axis n2, through which angle and about which axis is the overall rotation? This 
question was asked and answered by Hamilton in the last century using his mathematical method of 
quaternions, (7°) and interest in the solution has been revived recently in the context of composite 
pulses by Blfimich and Spiess. (49) The answer to the question is by an angle/~12 about an axis na 2 
given by 

CI 2 = Cl C2 --  S1S2nl  "n2 

Sl 2 n ~  2 = SlC2nl + ca s2n2 - st s2nx × n2 (49) 
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where sa =sinflff2, ca =cosflff2,etcJ 4°) A proof of this property using terminology familiar to the 
NMR community is given in Ref. (40). A solution may also be written down for three non- 
commuting rotations: 

C123 = CLC2C3 --  (S182C3nl "n2 + Sl c2sana "n3 + ca s2san2"n3) 
+sas2s3(n a x nE)'n 3 

S123n123 ~ $1 c2c3n1 q- ClS2Can2 "~ Ca c2san3 

-- (S 1 s2c3n I × n 2 + s a c2s3n I x na + cx s2san2 x n3) 

- SlSESa(na(n2"n3)-(n3"na)n2 + (na'n2)na) 
(50) 

The above equations provide an exact alternative to the approximate coherent averaging theory in 
calculating the effect of a pulse sequence, although they often get too cumbersome to be used for 
more than two or three rotations. Nevertheless, a number of interesting properties of composite 
pulses can be derived analytically. {4°) 

We now consider some special cases of eqns.(49) and (50).' 

(a) Two small non-commuting rotations are applied (fll,fl2 '~ 1). A series expansion of the overall 
rotation may be made: 

fla 21"ha 2 "(flll 'na + f121"n2)-- ~i[flal'nl, f12I'n2] + ' ' '  (51) 

(b) Three rotations 
(rotation sandwich): 

which is a special case of the Baker-Campbell-Hausdorff formula, tl°) In the above, the property 
[l-n1, l.nz] = il.(n I x n2) was used. 

are combined, the first and last are exactly opposite (fllna=-f13n3) 

fl123-•-•2 
I ' n 1 2 3  ~--- exp { - iflal-n3 }I-n2ex p {iflal-n a } (52) 

These two properties take particular importance in the theory of composite pulses. The first because 
it shows how small rotations can be combined, and destructively interfere if fllnl ~-f12n2 , The 
second because it forms a way of manipulating the rotation axis of a given rotation whilst 
preserving the rotation angle, i.e. a similarity transformation. The property (b) above may also be 
proved using a formula often useful in the theory of NMR: 

exp(U A U -1)= U exp(A) U -1 (53) 

which is easily demonstrated by series expansion of the exponential. 
Let us now concentrate on the practical implications of this latter property. Three practical cases 

of similarity transformations are significant. 

(a) The actual 'sandwiching' of a given pulse by two pulses of opposite flip angle, in order to 
change its rotation axis. For example, if an ideal pulse (flo)o is sandwiched by two ideal pulses 90°0 
and 90°70, the combination is by eqn. (52) equivalent to an ideal rotation through flo about the z- 
axis, (flo)o (composite z-pulselaS)). 

(b) An overall phase shift of a pulse or set of pulses is also a similarity transformation, since the 
rotation angle is left constant whilst the rotation axis is changed. The propagator may be thought to 
be sandwiched by two opposite z-rotations: 

U,~ = exp { - iq~I, } U~f0ex p {icM,}. (54) 

Compare also eqn. (20). 

(c) The cyclic permutation of a pulse sequence element from one end of the composite pulse to the 
other also represents a similarity transformation. Suppose a sequence S exists with propagator U(S) 
and which contains an initial sequence of pulses X which has a propagator U(X). If X is removed 

JPNMRS 18/2-B 
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from the beginning of S and reintroduced at the end (with no change in its order in time), the 
propagator for the permuted sequence (which can be denoted X-~SX), is given by 

U(X-lSX) = U(X) U(S) U(X) t. (55) 

(Note the different chronological order in the sequence and the propagator.) Therefore if S 
produced a rotation by fls about an axis ns, then the sequence X - I S X  produces a rotation through 
the same angle fls, but about a new axis n' modified by the action of X on ns: 

l-n'= U(X) l'ns U(X) * (56) 

We refer to rotations through the same angle but about different axes as similar rotations. 

3.4. Recursive Expansions 

The power of the above properties is that they show how to manipulate pulse sequences so as to 
produce well-defined effects on their overall propagators, to a large extent independent of their 
internal structure. This suggests methods of recursive expansion, in which any given pulse sequence 
is combined with its analogues derived by similarity transformation, to produce a longer sequence 
with more desirable properties than the original. The method is recursive because this new sequence 
may be in turn inserted into the machinery again to produce an even longer and even better 
sequence, and so on. Recursive properties can also be derived in the framework of coherent 
averaging theory, ca'L) but discussion tends to be much simpler in terms of similarity transformations 
of rotations. This point of view is supported by the contrast between Waugh's elegant and simple 
theory of heteronuclear decoupling "6'~7) and the intricate coherent averaging theories which 
preceded it." ~ - 14) 

3.4.1. Broadband cycles. Broadband cycles are composite pulses possessing vanishingly small 
overall rotation angles over a wide range of imperfections, especially resonance offset. At first sight 
it is not entirely clear to what use cyclic pulse sequences might be put, since they return irradiated 
spins to their initial state. In fact they are of great importance in themselves as heteronuclear 
decoupling sequences, tit  -23} and also play a central role in the construction of more general 
composite pulses. 

Two different recursive procedures are known for generating broadband cycles, involving cyclic 
permutation of either 180 ° pulses "`*) or 90 ° pulses "~). Only the latter procedure will be discussed 
here, since it is generally recognized to converge more rapidly in the region of fairly small offsets and 
to yield more efficient cycles than the former. 

The Waugh expansion "7) takes an initial approximation to a broadband cycle Co "), which 
provides a small rotation through an angle/~"), and produces a new cycle Ct0 "+~) which is twice as 
long as C~o ~) but has a much smaller overall rotation angle ffm-~ 1)_~ r/if"), where r/is a convergence 
parameter, r/<< 1. A constraint is set upon the starting cycle C(ff); for rapid convergence, C~o ~) should 
be of the form C~o ~-  t) ~ o  t), i.e. it should itself consist of two cycles of opposite phase. This ensures 
that the rotation produced by Co ~) is about an axis n(o m) close to the z-axis, n(o").ez ~ 1. 

The procedure runs as follows. 
(a) Permute an element Po from the cycle C~0 ~), to form the cycle Po ~ C~o -) Po. 
(b) Shift the phase of the permuted cycle through 180 ° to give a cycle P[~o C(t~)o Pt8o- 
(c) Juxtapose the two similar rotations to yield 

C~o~+~)= P~-sto C~o Ptao Po t C(o '~' Po. (57) 

The cycle C(o re÷t) can then be used as input to step (a) again. It may be shown that convergence is 
usually better if on alternate steps of the expansion, the sense of cyclic permutations is reversed, i.e. if 
the first step follows the order in (a)-(c) above, then the next stage should employ back-to-front 
permutation, and the similar cycles should be juxtaposed in opposite order: 

~o'+2)=P0 ~o "+t) Po t P~8o c~m+,~tso Pi-~o. (58) 
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The element Po which is permuted is at best a broadband 90 ° pulse, i.e. it should transform Iz into 
the x y  plane to a good approximation independent of offset. This condition is already fulfilled quite 
well for a single 90 ° pulse, Po = 900, eqn.(23). Assuming the cycle C~o ~ produces a rotation through an 
angle/~m) about an axis acorn)= e,, and that o91 = coo, then Po I C~o ~) Po rotates through ]~m) about an 
axis close to the x y  plane, defined i n eqn.(22), The phase-inverted version P~-sto C~0 P1 so then rotates 
through the same small angle about an axis which is almost antiparallel, and by using eqn.(51), it is 
easy to show that C~o ~+1) produces a rotation through a smaller angle/~,~+1) about an axis n~o re÷l) 

defined by 

/~,, +1) l-nCo " + l) = (1 - n/4) (f2/o9°) 2 {2/~")lz - (/~"))2I x } (59) 

accurate to third order in offset (~/to°~ For small ~m) the convergence parameter ~/is given by 

r / -2( I  - n/4Xfl/co°) 2. (60) 

Convergence is weaker if C~o ~) does not produce a rotatioxi about the z-axis, n¢o m) 4: ez, and in this 
case the sense of permutation and juxtaposition on successive stages of the expansion also becomes 
important. 

Waugh suggested building up broadband cycles based on the starting cycle C~o °) = 360o3601so and 
demonstrated their favourable properties by computer simulation. Shaka et a/. (2°'21) made an 
important contribution by noting that since eqn. (60) ensures fast convergence anyway in the 
neighbourhood of f~/ogt ° ~0, cycles with wider broadband properties can be designed by using a 
starting cycle which is already perfect at some fairly large offset, and not worrying too much at its 
performance at small offsets. The faults at small offsets are rapidly corrected on expansion, whilst the 
good cyclic properties at large offsets are preserved. They chose instead the starting cycle 
(30) = 27002701 so, which is perfect (/~0)= 0) at offsets ~/~ot ° = 0 and + 71/2/3. Expansion of this cycle 
to order C5o 4) using the Waugh procedure yields a highly efficient broadband cycle called WALTZ- 
16 (2°'2u given by 

2701803600180t so270o90t so 18003601 so 18002701 so - 
27003601 so 180o2701ao90o18018o360o180 la02700- 
270o360t s0180o270t so9001801 so360o180t so2700 - 
2701 so360ol 80t so270o901 sol 80o36018018002701 so 

(61) 

which has a vanishingly small rotation angle over all offsets -1.0<~/o9°<1.0.  (In fact the 
construction of WALTZ-16 does not follow the Waugh procedure completely logically, since the 
'natural' second stage 

~o 2) = 90o1801 so2700901so18003601so18002701so9001801s02700 

was rearranged to give 

C~o2) = 9001801so360o1801 so270o901so180o3601 so 180o2701 so 

Whether this logical inconsistency has a noticeable effect on decoupling efficiency is not known.) 
Recently, additional variations on the theme have appeared, whch have been claimed to possess even 
larger cycle bandwidths than WALTZ-16J 22'23) A more thorough discussion of heteronuclear 
decoupling is beyond the scope of this article. 

Very long cycles such as WALTZ-16 are not much use in the construction of composite pulse 
sequences. In this article we refer to the following short approximations to broadband cycles: 

(i) 36003601 so (62) 
(ii) 27002701 so i (63) 
(iii) 1801so360ol 801 so360o (64) 

The first of these is a good cycle for small offsets. The second is a very rough cycle over an extended 
range, providing however up to 30 degree rotations at intermediate offsets. The third is a refined 
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version of the second, much more accurate (errors only about 5 degrees) but twice as long. In 
addition, Star~uk et al. (~ o) have recently noted that cycles employing intermediate pulse lengths such 
as 28502851so provide a compromise between these extremes. The properties of these broadband 
cycles are contrasted in Fig.6, which show contou r plots of the overall rotation angles produced by 
the broadband cycles as a function of both r.f. field and resonance offset• For completeness, the 
performance of the long cycles (a 3) 

RoRoR~ soRI soRoRlsoR~ soRoR~ soRoRoRI soRl soRl soRoRo 

where 
R~, = 90,~240,~ + 9090~ (65) 

and WALTZ-16 [eqn.(61)] are also shown. 

3.4.2. Recursive expansion of  composite 90 ° pulses. We now introduce a fourth similarity 
transformation of a pulse sequence, inverse formation (aT), which like phase inversion and cyclic 
permutation, preserves the rotation angle of a sequence whilst changing the rotation axis. Forming 
the inverse of a pulse sequence involves finding another sequence which produces an exactly 
opposite rotation. If a sequence S has propagator U(S), the inverse sequence S t"" is such that 

U(S ~ )  ~- (U(S))* = ( U(S))- 1 (66) 

It is clear that a sequence together with its inverse should form a cycle. 
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FIG. 6. Numerical evaluation of the overall rotation angle fl produced by cyclic pulse sequences as a function of 
both r.f. field cot/to ° and resonance offset Q/to °. Full contours run from 15 ° to 120 ° in units of 15 °, broken 
contours are at 1°,5 ° and 10 °. The sequences are (a) 360o3601so; (b) 270o2701ao; this sequence is broadband but 
very inaccurate: (c) 180o3601aolS0o3601so; (d) 'MLEV-16' reqn.(65)]; (e)'WALTZ-16' [eqn.(61)]. The numbers in 

parentheses give the duration of the r.f. irradiation in units of a 90 ° pulse length. 
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If resonance offset effects may be neglected, the inverse of a sequence may be formed by applying 
the r.f, pulses in reverse order and with a shift of 180 ° in the phases: 

If o o o o s = ( P ~ ) , , ( / h ) ~ ( / h ) ~ .  • • ( t ~ ) ~ ,  

then 

~inv - - / R 0 ~  0 0 0 
- -  I,t~PY4ap + 180" ' '(~3)q~ 3 + 180(~2)q~ 2 + 180(]~1)q~1 + 180 ( 6 7 )  

If resonance offset effects may not be neglected, it is not possible to form the inverse exactly, except. 
in some special cases where the sign of resonance offset is under control of the experimentalist 
through the application of static magnetic fields (this is the case in some imaging applications). 
Nevertheless a good approximation for the inverse is still available in the form of a truncated 
broadband cycle. Consider a broadband cycle C having an effective rotation angle fl close to zero for 
a range of offsets. If the cycle contains a terminal element P, it may be considered to be formed from 
two unequal parts, C P -  ~ and P, with propagators related by 

U(P)U(CP- ' )  ~ 1 (68) 

Hence C P -  ~ is a good approximation to P~**. Thus approximations to the inverse of a single 900 
pulse are the sequences 360 lso270 o, 270t sol80o, 1801 so360o1801 s0270o, etc. 

Assuming an inverse may be found, a recursive expansion procedure is available for progressively 
refining the ability of some pulse sequence element/~o ") to destroy z-magnetization: (37) 

P~o" +l ) ___ (p(9~)1~, p(0 ~) (69) 

If resonance offset effects are neglected, application of this procedure to a starting sequence 
P~°)=90o produces successively the expansions /~ol)=9027o90o, P(o2)=9027o90tao9027o90o, etc. The 
first of these was already discussed in a different way in Section 3.1. If resonance offset effects are 
present, sequences such as /~o~)=(P~°o)) l*v P(°)'-'3609o27027o90o t71) are called for. It should be 
remembered that if resonance offset effects are present, convergence of the procedure (69) is critically 
dependent on the accuracy of the inverse. 

A simple rationalization of the procedure (69) may be given. Suppose P~o ") represents some 
rotation which takes a vector from the z-axis to a position n close to the xy plane. The propagator 
for/~o "+1) may be written 

U(P(o " + ')) -~ U(P(o ")) exp( - i~l ,)  U(P(~")) * exp(i~-I,). (70) 

Neglecting the term on the right, exp(i~I~), which is irrelevant if the sequence is applied to z- 

magnetization, eqn. (70) represents a similarity transformation of the propagator e x p ( -  i~lz) by P(o ~). 

Thus the rotation axis is moved from z to n near the xy plane. A 90 ° rotation about this axis provides 
a much more efficient destruction of z-magnetization than the original rotation P(o ~) (Fig.7). This is 
stated more mathematically in Ref.(37). 

3.4.3. Recursive expansion o f  180 ° pulses. It is also feasible to design recursion procedures which 
progressively refine the ability of composite 180 ° pulses to invert longitudinal vectors. If composite 
180 ° pulses are denoted R(0 m), three of these procedures may be denoted (43'46'47) 

e~o" +" = R :  R~ m~ R~o ~ (71) 

where the value of ~b is discussed below, and 

Rto'+')= Rto m' R(o m) R(~o Rt6~ R ~  o (72) 

R(o"+l)= R(o ") R~"~)o R ~  --33oa(") R(o-) (73) 
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a b 

n n 

Fl6. 7. Physical basis of the recursive expansion of composite 90 ° pulse~ (a) An inaccurate sequence P~o ~ should 
rotate a vector from the z-axis to the xy plane, but the vector ends up at a position n instead. (b) The sequence 
P~o ~÷'~ defined in eqn.(69) produces a rotation by 90 ° about n, which gives a more accurate transformation of z 

into the xy plane. 

For composite 180 ° pulses, a three- or five-fold expansion is indicated because the product of only 
an odd number of inversion operations is another inversion operation. 

The three-fold expansion, eqn. (71) is applicable only to time-symmetrical sequences R~om~, ~4°~ 
whilst the five-fold expansions, eqn. (72) and (73) may be applied to any inversion pulse. Also, the 
three-fold expansion eqn. (71) produces enhanced performance only with respect to r.f. 
inhomogeneity, whilst the five-fold expansion makes no assumptions as to the form of the pulse 
imperfections, t47) Even pulse shape and phase transient errors may be compensated in this way. 

All of these expansions may be rationalized using coherent averaging theory. However the most 
satisfying investigation of (71) was produced using the exact theory of non-commuting rotations as 
in Section. 3.3. ~4°) It was shown that if R~o m) produces a rotation by an angle f f~  about an axis in the 
xy plane, then Rto m+l~ also produces a rotation about an axis in the xy plane but through an angle 
fire+l) given by 

cos(ff " ÷ 1)/2) = cosfl°~)cos(ffm~/2) - cos~bsinfl°")sin(ffm)/2). (74) 

Now in the absence of off-resonance effects, a single pulse always produces a rotation about an axis 
in the xy-plane, and this property may be shown to be preserved by all time-symmetrical 
expansions34°) In the case that ~b= 120 °, deviations in firm) from 180 ° are corrected to second-order: 

cos(ff m + 1)/2) = cos3(/~m)/2). (75) 

The expansion eqn. (71) also has the versatile feature that 'coarse' adjustments of the properties of 
R~o m) are available by setting~b# 120 °. For  example, if q~=90 °, then those r.f. fields for which the 
composite pulse Rio m) performs so poorly that it destroys rather than inverts longitudinal 
magnetization give ideal performance for Rio ~ +1).t43) This facility for coarse adjustment allows rapid 
progress towards sequences with very wide ranges of compensation. Starting from Rio °)= 180o, the 
sequences 

Ro = 180o180901800 (76) 

and 

Rto 2) = 180018090180018090180270180901800180901800 (77) 

can be built up. (43) One stage of coarse adjustment with ~b=90 ° followed by one stage of fine 
adjustment with ~b = 120 ° produces the highly compensated sequence t43) 

R~o2)= 180o1809o180o18012o18021o18012o180o1809o180o (78) 
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The five-fold expansions, eqns.(72) and (73), are even more powerful because they make no 
assumptions at all about the form of the pulse imperfections or the sequences Rio m~. They were 
derived very elegantly by recognizing that an arbitrary rotation through an angle fl about the axis n 
may be formed by juxtaposing two non-commuting rotations, both of which are about axes in the xy  
plane and one of which is through 180 degrees: t47) 

exp( - ill-n)= exp( - inl-G)exp( -/el.n;). (79) 

Here nse~=n~-e~=0 and the angles e, ( and y are parametrically dependent on fl andn. Also, if 
exp(-ifll.n) is close to being a perfect inversion operation, then the angle e is small. Using the 
property 

exp( - inl-n~)exp( - id-n~) = exp( -/el.n;,)exp( - ird.n~) (80) 

where ~'--- 2~ -  ~, it is possible to show that expansions as in eqns.(72) and (73) cancel e to first order. 
Tycko et al. Ia7~ generated sequences up to and including Rto '*~ (with 625 pulses) and demonstrated the 
spectacular insensitivity of such sequences to all types of pulse imperfection. A detailed investigation 
of the properties of such expansion procedures using the mathematical method if fixed-point 
analysis has recently appeared, tv2~ 

3.5. Transmutat ions o f  Composite Pulses 

Once a particular composite pulse has been created by one of the methods described above, it may 
often be transmuted into a different type of composite pulse by changing the phase of part of it, or 
by combining it with another sequence related through similarity transformation. An example has 
already been given: A broadband cycle may be transmuted into a broadband 90 ° pulse by changing 
the phase of a terminal 90 ° element by 90 °. Other important transmutations are the following. 

(i) A composite 90 ° pulse Pto~ may be transmuted into a composite fl pulse (fl)to~ by juxtaposition 
with a similar sequence (p~)i~, derived by inverse formation and phase rotation by fl:t37~ 

[(fl)3(fl~o "~ = (~/7') ~"" ~ o  "~. (81) 

In this equation, the composite pulse (fl~o ~ has been supplemented on the left by a rotation through 
fl about the z-axis, indicating that if this pulse is introduced into a sequence, the phase of this pulse 
and of all subsequent pulses must be adjusted to take this into account, as discussed in Section 4. 
Including the z-rotation, the propagator for sequence (81) is given by 

t r ( / ~ o " ° ) e x p (  - iflI,)= u ( P * o " ' ) e x  p (  - iflr~,)u(p~;'~)* 
= exp( - i~pt*)I=)exp( - ifllx)expi~b**)l=) (82) 

where ~b ~m) is the phase of transverse magnetization produced by the sequence /~o ~) acting on z- 
magnetization, and assuming that P~o m) is well enough compensated to ignore residual longitudinal 
components. The propagator of eqn.(82) corresponds exactly to a composite fl pulse of phase ~b ~m~. 

A special case of this procedure is when fl= 180 °. Then pC0m) is transmuted into a composite 180 ° 
pulse. Examples neglecting off-resonance effects are the composite 180 o pulses R~o ~) = 90018090900 
and R ~z~ = 9027090180902701800902709018090270, derived from Ptoll and Pto2~ given in the previous 
Section. In the presence of off-resonance effects, pulses such as 270o180zso90o ~2°'2~ may be derived 
from P{o °J = 900 and (p{o~)l**,,. 2701 so 1800, and also higher-order composite pulses such as 

R~o,, = ( ~ o )  '~, P~d~ 
= { ( / % ~ ) 1 . , = o ~ . . ,  ~o  o, • o ,18o ((P~°d)l"" } 

l*  1 8 0 1  * 9 0  

--~ 3600270180909036027027090900, (83) 
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which is known under the name GROPE-16. ~42~ Higher-order expansions of this form have similar 
properties to the 5-fold expansions of the previous Section in that they are capable of compensating 
resonance offset effects and r.f. inhomogeneity effects at the same time, although their performance is 
strictly limited by the difficulty in forming short inverse sequences of usable accuracy. 

(ii) If resonance offset effects are neglected, composite 180 ° pulses which are symmetrical in time 
may be transmuted into composite pulses of any flip angle 13 simply by shifting the first half of the 
sequence by fl relative to the other half. For example it is possible to derive the composite 45 ° pulse 

180o1809ol 80o1801209021 o902s51801651804518013518045 (84) 

from the composite 180 ° pulse R~o 2) given in Ref.(43) and eqn.(78) 

3.6. Other Approaches to Composite Pulse Construction 

A few other ways have been suggested of constructing composite pulses. One of the more 
interesting ones arises from the group of Pines. t24) A class of continuous phase and amplitude 
modulation schemes may be devised with broadband inversion properties, t24,2a- 3o~ The principles 
of such modulation shapes are an extension of the theory of broadband 360 ° pulses which was 
worked out in optical spectroscopy especially in conjunction with the phenomenon of self-induced 
transparency tTa~ (The propagation of coherent pulses of particular shape through certain normally 
opaque media.) If the r.f. amplitude is constrained to be constant (to 1 = 09°), the phase modulation 
q~(t) which gives a broadband 180 ° pulse has been derived to be t24~ 

t 0 
~b(t) = S0oga cos7 tan {(og°siny)t ' } dt' (85) 

where the pulse extends from times t =  - T / 2  to T/2, over a total duration Tgiven by 

T= n/(o9 ° sinT). (86) 

Here the parameter ), controls the degree of off-resonance compensation of the pulse; ~ = 90 ° leads to 
a conventional unmodulated 180 ° pulse with no compensation, whilst if 7 approaches zero, the pulse 
becomes longer and acquires broadband properties. 

For  practical applications on conventional instruments, it has been suggested to approxi- 
mate this smooth modulation scheme by a set of discrete pulses with different phases. This 
gives the composite 90 ° pulses ~24) 849425108494, 642321229631001229664232, and 
39329542096613984702670847o661395420939329 (The last tWO sequences were printed incorrectly in 
Ref. (24).) 

This method of generating composite pulses is of theoretical interest, but in practice has little to 
recommend it. The considerable length and inconvenient phases of the last two sequences are not 
compensated by their providing particularly spectacular bandwidths, and it is difficult to see how to 
generalize this approach to other types of composite pulse. However continous modulation schemes 
themselves rather than their discrete approximations probably will have a promising future. Some 
similar suggestions have been given by other workers, t28- 3o) 

3.7. Symmetry Properties 

It is often desirable to exploit symmetry arguments in determining the effect on a pulse sequence 
of transformations such as reversal of the order of the pulses in time, or reversing the sense of phase 
shifts. Symmetry arguments are also useful in deciding if the performance of the sequence depends 
on the sign of the offset from resonance. Most of the relevant properties may be deduced by 
considering the propagators for three different pulse sequences, called here A,B and C, which are 
related to each other through the following transformations. 
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(a) B is derived from A by reversal of the order of all pulses in time, retaining the sign of all phase 
shifts, so that 

gba(t) = C~a(Z - t) (87) 

where r is the duration of the sequence. 

(b) C is derived from A by reversing the sense of all phase shifts, keeping the order in time, so that 

O c ( t ) =  - (aA(t) (88) 

For example, if A =900180x20 then B =  18012o900 and C=90o18024 o. 

Neglecting as usual spin-spin couplings, it can be shown that the propagators for the three 
sequences are related by 

Un(l)) = exp(-i l t lz)  Ua( - f2 ) *exp ( iT t l z )  (89) 

Uc(D) = exp-i~zlx) U A(--~))  exp(i~zlx) (90) 

where all propagators are expressed as functions of offset D. 
As an example of the application of such expressions, consider a pulse sequence which is 

symmetrical in time (A=B) acting on an initial density operator a (0 )= l  z. The resultant z- 
magnetization as a function of offset is given by 

( I  z )  + (~ )  = Tr { U A(~) I  z Ua(fl)*l z } 
= Tr { UA(~)*Iz  U,4(~)I ~ } 

= Tr {exp( - i~ l z )UA(  - ~ ) ) e x p ( i ~ I , ) I , e x p ( - i ~ l z )  Ua( - ~ )*exp( i l t I , ) I z  } 

= Tr { UA( -- ~)lz UA( -- ~)+I, } 
= ( l z )+( - - f l )  (91) 

using the invariance of the trace to cyclic permutation. Hence the z-magnetization after a time- 
symmetrical pulse sequence is independent of the sign of resonance offset. ~36) 

As a second example, consider a sequence containing pulses only of phases 0 or 180 °. In this case 
A = C, and we have 

( I , )  + (fi)  --  Tr { U A ( n ) I ,  U A(fl)*I,  } 
Tr {exp( -- i~I  ~,)U A( --  ~ ) e x  p(i~l~,)l~exp( --  i ~ l  x) U A( --  f l ) *exp ( i x l  x ) l ,  } 

= Tr { UA( --  n X  - I , )  UA(  - n)*(  - I , )  } 

-- ( I z ) + ( - f l ) .  (92) 

Hence here too, the z-magnetization is independent of the sign of resonance offset. This can also be 
demonstrated for ( ly)+.  However (1~) + changes sign if the off-resonance term is inverted. 

Many more relationships on similar lines may be derived. A further example which has already 
been mentioned is that the overall rotation produced by a time-symmetrical sequence applied on 
resonance is about an axis in the xy-plane. {4°) Additional symmetry properties are encountered when 
composite pulses are applied to dipolar-coupled systems; the expectation value of any angular 
momentum component after an arbitrary pulse sequence applied to z-magnetization is independent 
of the sign of the couplings. ~45) 

3.8. F a r  O f f - R e s o n a n c e  B e h a v i o u r  

Most of the composite pulses so far described have been designed with the intention of 
applications in high-resolution NMR, where resonance offsets are usually of the order of the r.f. field 
strength. However there are a number of potential applications within and outside NMR in which 
behaviour far from resonance is of interest. An example is selective excitation, where weak 
composite pulses could be used to provide a flat frequency response over some band of resonances. 
This would be particularly useful in NMR imaging, since it would allow uniform excitation within a 
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flat slice selected by a static magnetic field gradient. Applications of composite pulses are also 
conceived in coherent laser spectroscopy.< v4- 76> Here the considerable inhomogeneous broadening 
of many lasers compared to the strength of the interaction between the electric field and typical 
electronic transitions also provides large off-resonance effects. 

Warren has shown by using a form of coherent averaging theory that sufficiently far from 
resonance, the effect of arbitrary pulse sequences is proportional to the Fourier transform of the 
excitation, t3°} Thus the linear approximation, which we emphasized above to be very poor near to 
resonance, regains its validity if offsets become large. (This needs some qualification in the light of 
the demonstration of high-order NMR resonances in the case of suitably modulated r.f. fields, which 
show that even for weak irradiation with no Fourier components close to resonance, strong non- 
linear perturbations of the spin system may result. (77- 7s> However these 'multiple-photon effects' 
need considerable time to develop and can usually be ignored.) The resurrection of the linear 
approximation at high offsets is bad news as far as the direct application of composite pulses is 
concerned, since the sudden phase shifts involved in composite pulses give wild oscillations in the 
frequency spectrum far from resonance. Hence smooth modulation of amplitude and phase is called 
for in developing frequency-selective pulses, rather than the discrete modulation schemes discussed 
above. <24-31> This of course does not rule out many useful applications in NMR imaging where 
excitation or inversion of all spins in the sample can be achieved using strong composite pulses. 
Also, it might be possible to round the shapes of composite pulses so as to remove the oscillatory 
characteristics far from resonance without perturbing too much the good behaviour at small offsets. 

4. CLASSIFICATION AND PROPERTIES OF COMPOSITE PULSES 

4.1. Classification 

We have seen in the previous Section that there are numerousmethods for creating composite 
pulses, based on different theoretical approaches. It is not surprising that the different approaches 
give rise to composite pulses with different properties. To ease discussion of the way in which 
composite pulses can be introduced into a multiple-pulse NMR experiment, we now introduce a 
system of classification according to the transformation properties of the pulse sequences. 

We assign composite pulses to four classes, which we call A, B1, B2 and B3. The characteristic 
features of the four classes are as follows. 

(a) Composite pulses of type A produce, over a particular range of imperfections, a fully 
compensated rotation of the system, so that 

Up" Up °. (93) 

This implies that, within some approximation, all initial states of a spin system are rotated to what 
their values would be after an ideal pulse. Hence this type of composite pulse is the most versatile of 
all. Numerical optimization with the help of coherent averaging theory seems best suited for 
creating this type of composite pulse. ~44'45'4s~ 

Composite pulses of type B, on the other hand, do not enjoy such full compensation of the 
propagator, so the compensation effect depends somewhat on the initial condition of the spin 
ensemble and the tolerance of the particular experiment to phase errors. We define the properties of 
the sub-types BI,B2 and B3 as follows. 

(b) Composite pulses of type B1 produce, over a range of imperfections, a partially compensated 
rotation such that 

U p "  exp( - i~,~klk,) U°p exp(i~keklk,). (94) 

Thus the compensated propagator differs from the ideal propagator only by an overall phase shift, 
which may be dependent on the pulse imperfections, and in the case of off-resonance effects, may 
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differ from spin to spin. The theory of composite pulses discussed in Sections 3.3 to 3.6 often creates 
this type of composite pulse. 

(c) Composite pulses of type B2 enjoy a compensated transformation of one particular initial 
condition, usually Iz, to one particular final condition, i.e. 

U ~ l z U  ot ~- - l°1 - l°*. (95) 

The transformations of other initial conditions may not even resemble the ideal ones. 
(d) Composite pulses of type B3 give again a compensated transformation of one particular initial 

condition, but the phase of the final density operator is not compensated and may depend on the 
imperfections, i.e. 

• 0 O t  " U.I=Uo*~--exp(--~T,k~kIu)UpI, U p exp(,~keklu). (96) 

As examples of these last two categories, composite 90 ° pulses often produce compensated 
transformations I~---~-Iy(category B2) or I~---d.n~ (category B3; ~b is arbitrary). In general, the more 
pictorial approaches to composite pulse design tend to produce partially compensated rotations of 
these last two types. 

b 

CI 

t 
A BI 

.t 
B2 B3 

FXG. 8. Classification of composite pulses. (a) Venn diagram showing the mutual membership of classes A, B1, 
B2 and B3. (b) The types of transformation belonging to the four classes for a composite 90 ° pulse• Class A 
contains only ideal transformations through 90 ° about a defined axis in the xy  plane. Class B1 tolerates phase 
deviations in the rotation axis. Class B2 is concerned only with the transformation of one particular initial 
condition to one particular final condition, the rotation not being uniquely defined. Class B3 also tolerates phase 

errors in this final condition. 
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The four classes are not mutually exclusive; for example, a composite pulse of class A also 
simultaneously belongs to B1, B2 and B3 as well. The Venn diagram of Fig. 8a is intended to clarify 
this. Fig.8b shows, for a composite 90 ° pulse, the different types of rotation which can be 
accommodated in the four categories. 

For composite 180 ° pulses, a simplification takes place because the only rotations which produce 
a transformation Iz---,-lz are of the form 

exp( - i~kekl kz ) exp( -- in ~,,kl kx ) ex p( i~,,kekl kz). (97) 

i.e. 180 ° rotations about axes in the xy plane. Thus all classes B1, B2 and B3 share the same members 
in this case, and composite 180 ° pulses may be termed B-type without ambiguity (Fig. 9). 

4.2. Comparison of Composite Pulses 

In Tables 1-2 we group most of the useful known 90 ° and 180 ° composite pulses into the four 
categories presented above. A subjective judgement as to whether the compensation is 'low' 
'moderate' or 'high' is also given. This will be placed on a more quantitative basis in a moment. For 
many of the pulses in categories A or B1, a supplementary z-rotation has been appended to the pulse 
sequence. This indicates that the overall propagator of the sequence must include an ideal additional 
rotation about the z-axis. In practice phase adjustments of subsequent pulses are necessary in order 
to take account of this as is discussed in Section 4.3.2. 

Dieter Suter of the ETH-Ziirich has kindly made available a PASCAL computer program for 
numerical simulation of composite pulses. The program calculates the overall rotation angle fl and 
axis n generated by a composite pulse in the presence of simultaneous r.f. inhomogeneity and 
resonance offset effects by application of Hamilton's eqn.(49) to the propagators defined in eqns.(18). 
The overall rotation may then be compared with an ideal rotation, or applied to Iz and the 
transformed density operator examined. Parameters of interest may then be displayed as contour 
plots against the two parameters f~/to ° and o~l/co °. In the diagrams discussed below, all contour plots 
are drawn with full contours spaced at 0.2 intervals and dotted contours appearing at +0.9 +0.95 
and +0.99. 
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FIG. 9. In the special case of a composite 180 ° pulse, classes B l, B2 and B3 coalesce. 
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4.2.1. Compos i te  90 ° pulses 

In Figs 10-18 we examine the performance of various composite 90 ° pulses according to criteria 
appropriate to categories A, B1, B2 and B3. 

(a) For category A the rotation produced by the composite pulse should be compared with an 
ideal 900 rotation. The question arises as to how to compare quantitatively two rotations as abstract 
entities, without referring to the transformation of a particular initial condition. A suitable 
framework is provided by quaternions, t49~ which are four-dimensional unit vectors with elements 
related to the rotation angle fl and rotation axis n of a rotation operator by 

q = {cos(fl/2), n-exsin(fl/2), n-ersin(fl/2), n-e~sin(fl/2)} (98) 

It seems reasonable to take as a measure of the deviation of a rotation from ideality the scalar 
product of its quaternion with the quatemion for an ideal rotation; this has unit magnitude if the 
rotation is ideal and less than unity for an ideal rotation (if the scalar product is - 1 ,  this also 
indicates an ideal rotation; for example the ideal rotations 900 and 270°s0 are to be counted as the 
same thing). For an ideal 900 pulse the quaternion is 

qO= {2-1/2, 2-1/2, 0, 0} (99) 

so the quantity 

2 = [q.q° I = 2-1/21cos(/3/2 ) + n'e~sin(///2)l (100) 

is used as a measure of the ideality of composite 90 ° pulses of type A. 
(b) For composite pulses of type B1, the quaternion for the composite pulse should also be 

compared with the quatemion for an ideal rotation, but this time the phase of the rotation may be 
ignored. A parameter 2' is used, given by 

2 '=  2-  ~/2 {Icos/~/21 + Isin/~/21E(n'ex) z + (n'ey)2] 1/2 }. (101) 

This parameter is again unity for an ideal rotation, and less than unity for a non-ideal rotation. 
(c) Composite 90 ° pulses must be judged in category B2 according to the y-magnetization 

produced by the sequence when it is applied to I,: 

( ly> + = T r  {exp( -/ill.n) l,exp(i~l-n) I r } /Tr  {ly2 }. (102) 

The y-magnetization is - 1 for an ideal rotation, and greater for a non-ideal rotation. 
(d) Category B3 differs from category B2 in that the phase of the transverse magnetization is 

ignored. The relevant parameter is ( I x y )  + given by 

<lxy> + = {(<Ix> +)2 + (<ly> +)2 }1/2 (103) 

which is one for an ideal rotation. 
A single 900 pulse and four composite pulses are compared on the basis of parameter ). in Fig.10. 

Two of the composite pulses were designed by coherent averaging theory ~48) to give r.f. field 
compensation. That this was successful is revealed by the elongation of the region of ideal 
performance in the vertical direction in the contour plots. The performance of the sequence 
3850320180250 designed by coherent averaging theory so as to give off-resonance compensation, is 
also shown and indeed displays a moderate elongation of the dotted contors in the horizontal 
direction. For comparison, the performance of the sequence [90z]180o3601s0180o270aso909o is 
also shown. This was derived by the different approach of Section 3.4. This method of generating 
composite pulses does not give a fully-compensated propagator, as is revealed in the diagram which 
does not show a noticeable widening of the region of good performance. 

If the phase of the propagator is ignored, as in category B1, the relative merits of these sequences 
appear somewhat different. In Fig. 11 the parameter 2' is shown which is calculated for a single 900 
pulse and five composite pulses, three with r.f. field compensation and two with offset compensation. 
The three pulses derived by coherent averaging theory retain their previous ranges of compensation, 
but they now have competition in the form of the r.f. field compensated sequence ¢s7~ 
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FIG. 10. Numerical evaluation of composite 90 ° pulses according to the parameter 2 [eqn.(100)], appropriate 
for A-type composite pulses Full contours in 0.2 intervals, dotted contours at +0.9, +0.95, +0.99. The 
sequences are (a) 900, the r.f. field compensated pulses (b) 2701so3603491802131803ss[70=], (4s) (c) 900180105 
18031s[-60z], (48) and the resonance offset compensated pulse (d) 3850320180250: 48) The sequence (e) 
[90=]180o36018o180o2701so9090 (37:1) is also shown, but does not display compensation. Overall durations in 

units of a 90 ° pulse are given in brackets. 

[90=]901 so909o90o909o901 so909o901 s09027o and the offset-compensated sequence (37"71) 
[90~]180o3601so180o270xso909o. These latter two may be generated by the methods of Section 3.4, 
and have very wide compensation bandwidths if the phase of the propagator is ignored. 

When the y-magnetization generated is the criterion of ideality (category B2), different 
possibilities again exist (Fig. 12). The three coherent averaging sequences again perform well. For r.f. 
field compensation, the simple sequences 9030018060 and 459090090270450 created by simple 
geometric arguments (36) should also be considered. Their ranges of compensation are modest, but 
they are not too sensitive to resonance offsets. 
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FIG. 11. Numerical simulations of composite 90 ° pulses according to the parameter 2' [eqn.(101)], appropriate 
for Bl-type composite pulses The sequences are (a) 90 o, the r.f. field compensated pulses (b) 270180360349180213 
18035s[70=], (4s) (c) 900180105180315[-60=],(4s) (d) [90=]901 so909o90o909o901 so909o90t 8090270, (3~) and the offset 

compensated pulses (e) 385o320xso25o, (4s) (f) [90=] 180o3601so180o2701 so909o. ~37'~1) 

If the phase of the transverse magnetization may be ignored (category B3), the selection is wider 
again, as is shown in Fig.13 and 14. It is apparent that a single 900 pulse already has only a weak 
offset-dependence when judged by (Ixr) +, as is well-known. Four sequences are also shown with r.f. 
field compensation, the coherent averaging sequences 90o1801 os 180315[ - 60z] and 27018o3603,,9 
18021318035sr70z] (4s) being among them. These two are highly compensated, but rather offset- 
sensitive. The simple sequences 9009090 and 9030018060 (33-36) also display considerable r.f. field 
compensation when judged by (lxr) +. For off-resonance compensation, 385o3201so25o (48) is 
superior to 900 only for very small offsets. 
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FIG. 12. Numerical evaluation of composite 90 ° pulses according to ( I t )  +, appropriate for B2-type composite 
pulses. The sequences are (a) 900, the r.f. compensated pulses (b) 2701so36034918021318035s[70=], (48) (c) 
90o1801o51803,s[-60=], (4s) (d) 9030o18060,136) (e) 459o90o9027o45o, (36) and the offset-compensated pulse (f) 

38503201 so25o. (4s) 

The sequences 360o2701so909o and 180o3601so180o2701so909o (37'71) (Section 3.4) give some 
measure of simultaneous r.f. field and resonance offset compensation.  

4.2.2• Compos i te  180 ° pulses. In Figs 15-18 we compare  the large number  of composi te  180 ° pulses 
which have been suggested, in this case for simplicity only according to the degree of inversion of 
longitudinal magnetization,  ( lz> +. As in the previous calculations, the contours are given in 0.2 
units from - 0 . 8  to 0.8, with dotted contours at -0 .9 ,  - 0 . 9 5  and - 0 . 9 9  appear ing in the region of 
ideal behaviour. 
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FIG. 13. Numerical evaluation of composite 90 ° pulses according to (l:,r) ÷, appropriate for type B3. The 
sequences are (a) 90o, and the r.f. compensated sequences (b) 2701s03603ag180213180358170=], (4s) (c) 

90o180t 0s 180315[ - 60=], (4s) (d) 9090900, (33) (e) 903oo1806o .(36) 

Figure 15 shows the performance of a single 180 ° pulse, compared with three-element composite 
pulses of the form 900//00900 . The roughly T-shaped form of the contours in Fig. 15b shows that 
90018090900 compensates either small r.f. field errors o r ,  to some extent, resonance offsets, although 
compensation of the latter is not very precise. Resonance offset compensation is made more accurate 
by increasing the length of the central pulse, at the expense of bandwidth. (a2-34) The sequence 
90027090900 has i f (o)=  0 for off-resonance effects. ('4) 

Figure 16 shows the outcome of various attempts to improve the r.f. field compensation. 
Displayed is the calculated performance of the sequences 90o36012o90o, (36) 90909009027o1800 
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FIG. 14. Evaluation of composite 90 ° pulses according tO (Ixy)+, appropriate for B3-type sequences. The 
offset-compensated composite pulses are (a) 385o3201so25o, (4a) (b) 360o2701so909oJ a7:1) and (c) 

180o360] so180o2701 so909o .(a7'71) 

9027o90o909o, ta7) 180o18012o180o, (44) and the expanded sequences 18001809o1800180120180210 
18012o180o1809o180o (4a) and 180o1801os18021o360s9 .(4s) The range of compensation of the last two 
is clearly very large, but this is at the expense of a high sensitivity to resonance offset. A striking 
feature of the first three sequences is that although they were constructed using quite different 
principles, their performance is very similar. 

Sequences with improved resonance offset compensation are compared in Fig. 17. The sequences 
90o200oo8027o2009o90o, (a6) 39a2o542o966 la9847o267o847o66139542o939329, ~24) 90018018o270o and 
180o3601 so180o27018o90o (2°'21) all give wider bandwidths, but also without being very accurate. The 
last two have the important feature, however, that they involve only 180 ° phase shifts, making them 
very suitable for heteronuclear dccoupling, 12°'21) or after division of all pulse lengths by two, for spin 
I = 1 NMR (ag) (see below). The accuracy of the spin inversion can again be improved at the expense 
of bandwidth by using the sequences 90o2251so315o (s°) or 336o2461so109o7427o109o246]so336o :4s) 
A unique feature of the last of these is that, being derived from coherent averaging theory, the phase 
of the overall rotation is also compensated (sequence of type A). 

Figure 18 shows that 180 ° pulses can be created possessing compensation of simultaneous r.f. field 
and resonance offset imperfections. Two fairly short sequences with this property are 
360o2701so909o36027o2709o90o (42) and 360o18012o1806o18012o .(47) The truly spectacular per- 
formance of Tycko's sequence of 25 180 ° pulses with phases (47) 

0,0,120,60,120,0,0,120,60,120,120,120,240,180,240,60,60,180,120,180,120,120,240,180,240 
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is also shown; it is unfortunate that this sequence is too long for gereral applications. Figure 18 also 
gives the performance of the sequence C43} 

180ol 80901801 so 18012018021 o 18030018024018033ol 8060 

designed to give a good population only at a specific value of r.f. field, and to leave the spin system 
unperturbed at other values. From the plot given, it is clear that great care must be exercised in 
minimizing off-resonance effects if this sequence is to operate correctly. 

4.3. Usage 

The applications of a given composite pulse are determined by its category, Composite pulses of 
type A may be used in all contexts. However they do often involve inconvenient phases, and 
especially for off-resonance effects, a limited range of compensation. Composite pulses of categories 
B1, B2 and B3 may not always be used, since the precise form of the propagator depends on the 
pulse imperfections, but when they can, they will often be found to have advantages over those of 
category A. 

4.3.1. Pulses of  type B2 and B3. Pulses of categories B2 and B3 are the most limited in their 
use. Since they are only compensated for the conversion of Iz into a specific final condition, they are 
successful only for those experiments where this is the only transformation which occurs. This 
implies that they may be applied only in the case that the system is described by populations alone, 
coherences being absent. In addition, it must be decided if the phase of the final density operator is 
important. For example, when transverse magnetization is excited by a 90 ° pulse, offset-dependent 
phase errors are unimportant since they are easily corrected after Fourier transformation of the 
signal by complex multiplication of the data. Therefore in this context offset-compensated pulses of 
type B3 are sufficient, and often a single 900 pulse is good enough. On the other hand, if an 
inhomogeneous r.f. field is present and it is desired to excite a signal, phase errors proportional to 
the r.f. field strength may not be tolerated since they cause destructive interference between signals 
from different volume elements. In this case, no manipulations of the spectrum can retrieve the loss. 
Thus composite 90 ° pulses of class B2 (or A) are called for in exciting the signal in an 
inhomogeneous r.f. field. 

Similar considerations apply to composite 180 ° pulses, although here it is almost always possible 
to use pulses of type B if care is taken. In contexts where the sign inversion of I z is the necessary 
transformation, pulses of type B may clearly be used. Even in situations where the 180 ° pulses are 
used as refocussing pulses, phase errors in the rotation produced by composite pulses of type B can 
always be compensated by refocussing twice instead of once. c34~ Alternatively, the whole pulse 
sequence, including the 90 ° pulses, etc. can be compensated in phase-consistent fashion by using 
throughout sequences of type A or B1 (see below). 

4.3.2. Pulses of type A and BI ; Supplementary z-rotations. General pulse sequences in which the pulses 
operate on a wide variety of initial conditions must be compensated using sequences of type A or B 1. 
This needs care when the composite pulses are such that they require "supplementary z-rotations" to 
put the propagators in the required form. For example the propagator of the r.f. field compensated 
90 ° pulse t4s~ 2701 so3603491802131803s s is equivalent to that of 900 only if supplemented with a final 
[70z] rotation. These z-rotations, which are independent of the imperfections, must be taken into 
account experimentally by changing the phase of subsequent pulses, in the opposite direction to the z- 
rotation as written. Thus the sequence 2701 so3603491802131803s s-Z-2701 so36034918021a 1803~ s does 
not behave like 900-z-900, whilst the sequence 2701 so360a49180213180ass-Z-270110360279180133 
180zss[140z] would. Not all sequences require a supplementary z-rotation; the 180 ° pulse 
18022s 180018010~360314 does not, for example. 

A similar situation arises if composite pulses of type B1 are chosen, for example for wideband 
compensation of off-resonance effects. When derived by the procedures given in Sections 3.3.-3.5, 
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this leads to sequences with propagators  of the form eqn. (82). Again each pulse is associated with a 
supplementary z-rotation. But this t ime the way the sequence is constructed implies that the 
supplementary z-rotat ion is equal in magni tude to the nominal  flip angle, requiring a phase shift of 
all subsequent pulses by minus that amount. When all pulses are built up the same way, by 
juxtaposing sequences (~,))ln~ and Pro m) as in Section 3.5, a simple procedure can be devised for 
specifying the phase of all pulses in the sequence: Replace all pulses o (flp)¢p by composite  pulses 
~p(y m) ] l nv  , ,, / P(~J, where the phases q~ p and q5 p used for the two halves of each composi te  pulse are given 

~'~= 4,- ~ : I  ~ 004) 
and 

qY' - ~ '  - a °  (105) p - - Y p  r'p" 

Equation (100) takes into account the intended phase ~bp of the rotat ion and the history of all 
accumulated z-rotations.  Equat ion (105) supplies a phase difference between the two halves of the 
composite  pulse which is equal to the intended rotat ion angle. A sequence compensated in this way 
has an overall p ropagator  which differs from that for an ideal  pulse sequence only by extra phase 
rotat ions of the init ial  and final conditions:  

U¢omp = exp { - i2k(C~(km) -- ~ff= lflO)Ikz } U°exp {iZk~)~)Ikz } (106) 

where ~(k ~'~ are properties of the composite pulse, eqnl (82), and U here signifies the propagator  for the 
entire pulse sequence including delays. Since the composi te  pulses are of type BI,  the phase errors 
q~(k mJ may be dependent on the imperfections. But especially in the case of off-resonance effects, these 
extra phase factors are easily corrected and should not  present a problem. 

To make this discussion concrete, consider the pulse sequence for double-quantum spectroscopy: 

904, ~ - z/2-180d,2-z/2-90ev3-t-904~-t 2 (107) 

where the phases q~l to ~b,~ may be cycled from transient to transient  to achieve selection of a 
part icular  history of coherence orders, t79) but this does not  concern us here. To compensate this 
sequence for large resonance offsets, it is neccessary to use composi te  pulses of type Bl.  Sequences of 
the form (p/~)i.v Po are suitable where Po=90o  and (Po)lnv=1801so360o18018o270o (Section 3.4~ 
Employing eqns. (104) and (105), the compensated sequence is 

180¢1 + 1 s o360,~ 180¢,~ + 1 s o270~190~  + 9 o -r/2- 
180~2 +903604, 2 + 27o180~2 + 9o270~2 + 27 o90~2 +90 - r / 2 -  
180~, 3 + 27 o36063 + 901804, 3 + 270270¢3 + 9 o90,~3 + 1 so - q -  
180~, 4 + a so360~ 180~4 + 1 s o270¢~90¢~ + 90 -t2. (108) 

The sequence above is a rather more consistently constructed version of a compensated double- 
quantum pulse sequence published earlier, t3a) It should produce the same result as a normal  pulse 
sequence, except for having broadband characteristics, and for giving a final spectrum possessing an 
easily corrected phase gradient.  Experimental  results using this sequence are shown in Section 5. 

If it is wished to compensate the same sequence for r.f. field errors, the same procedure may be 
used with B l - type  composi te  pulses such as Po = 9009090 and (Po)t"v= 90270901 so. This compensates 
the main body of the pulse sequence but in this case the compensat ion effect is counteracted by 
phase errors dependent on the r.f. field strength which may cause partial  destructive interference, t4a) 
It is better to use sequences of type A in this case leading for example to 

270¢1 + l s o360¢1 + a491804, l + 21 a 180¢1 + a ~ s - z / 2 -  
180(b 2 + 185180¢2 + 290180¢2 + 35360¢2 + 2a 4 - r / 2 -  
270¢3 + 1 x 0360¢3 + 279180¢3 + 143180~b 3 + 288 --h-- 
270~ +40360¢~ + 219180~,4 + 73180,~4 + 21S --t2. (109) 
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Let us repeat again the considerations which must be taken into account in deciding which 
procedure to use for compensating some general pulse sequence. Sequences of type A may always be 
used, but sometimes with the sacrifice of some bandwidth. It is permissible to use sequences of type 
B2 or B3 only if the initial condition is entirely described by populations. To choose between these 
two classes it is neccessary to decide if phase errors in the final density operator are tolerable, which 
will depend on the experiment. In compensating more general experiments, in which the pulses are 
applied to density operators involving coherences, one must choose between pulses of type A or B1. 
It is permissible to use sequences of type B1 if the phase of the final density operator can be shown to 
be unimportant. This is usually the case with off-resonance effects because phase correction after 
Fourier transformation is possible. It is also possible for correction of inhomogeneous r.f. fields in 
the case of heteronuclear experiments, where the pulses on the channel not to be observed are 
compensated, since the signal observed on one channel must always be independent of overall phase 
shifts on a different frequency. However, for compensation of r.f. field errors in homonuclear 
systems, sequences of type A are superior, since they do not give a phase distribution of the final 
signal which is a function of the r.f. field strength, t4a) Whenever a general sequence is compensated 
by using composite pulses of type A or B1, care must be taken to take account of supplementary z- 
rotations by introducing extra phase shifts. For sequences of type B1, a simple recipe to do this is 
available since the supplementary z-rotation produced by each composite pulse is equal to its flip 
angle. 

Finally, we should point out that if composite pulses of type A are used, it is permissible to replace 
the pulses one at a time by composite pulses, and provide a continuously improving performance. 
But if composite pulses of type B1 are employed, because of their phase characteristics it is usually 
essential to replace all pulses simultaneously by composite pulses of similar structure; no 
intermediate stages are possible. 

5. APPLICATIONS OF ERROR COMPENSATION 

In this Section we discuss the application of composite pulses to several experiments in isotropie 
liquids. We discuss separately the manipulation of populations, the manipulation of Hamiltonians 
and the manipulation of coherences. 

5.1. Manipulation of Populations 

The manipulation of energy level populations by composite pulses has proved to be one of the 
most straightforward and successful applications. The first application of a composite pulse was the 
accurate inversion of spin populations by the 90018090900 sequence, in order to allow measurement 
of relaxation times by timing the null-crossing in the recovery from completely inverted to thermal 
equilibrium populations. (32) This particular application can certainly be criticized on the grounds 
that the null-point method is certainly a very weak measurement technique anyway, and that in fact 
any other single point on the curve will do, providing the initial populations after the (imperfect) 
inversion are known, and the recovery is truly exponential. Single-point determinations cannot 
compete with measurement of the full recovery curve in accuracy and can only be justified if 
measurement time is limited. Nevertheless population inversion by a composite pulse is useful in 
routine T1 determinations, even if a full recovery curve is measured, since the more exact the spin 
inversion, the higher is the dynamic range, and the more accurate the value of T1. Also, very exact 
population inversion allows a 2-parameter fit rather than a 3-parameter fit. One must anticipate that 
for the same reason composite pulses could be used profitably to obtain T~-dependent NMR 
images, (a°) especially since r.f. fields are often quite inhomogeneous in high-frequency imaging 
systems. 

Destruction of populations by composite 90 ° pulses is also useful in certain other methods for 
measuring relaxation times, such as 'saturation-recovery'. t4) 
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Composite 90 ° pulses find further uses in relaxation time measurements in coupled spin systems 
where it is sometimes desirable to ensure that only the total Zeeman magnetization ~klkz is 
measured and not multiple-spin terms like 21kflk,~, etc. After an ideal 90 ° pulse, the multiple-spin 
terms should be completely converted into multiple-quantum coherences and should give no signal. 
If the pulse is non-ideal, however, antiphase contributions to the signal may result. A composite 90 ° 
pulse which takes z-operators very exactly into the xy plane is appropriate in this case. Bodenhausen 
et al/sa) have suggested using composite pulses to suppress longitudinal multiple-spin order in two- 
dimensional nuclear Overhauser spectroscopy, and Shaka et aL ~7~ have demonstrated the utility of 
composite pulses of type B3 (in particular, 360o270~so909o), for a similar purpose in nuclear 
Overhauser difference spectroscopy. The very accurate and wideband destruction of z-magnetization 
by 36002701809090 (Fig. 14) makes it very well-suited for this particular purpose. 

5.2. Manipulation o f  Hamiltonians 

The most important application of composite pulses for the manipulation of spin Hamiltonians is 
of course broadband heteronuclear decoupling by such sequences as WALTZ-16/11 -23) However 
treatment of this large subject is beyond the scope of this article. 

Another application which might be considered as a manipulation of a spin Hamiltonian is the 
refocussing of magnetic field inhomogeneity by multiple 180 ° pulses/34) In the absence of spin-spin 
couplings, in which case special problems are encountered (see below), it was suggested that 
composite pulse schemes might be better for compensating cumulative pulse imperfections than the 
usual Meiboom-Gill method, which makes no attempt to compensate the individual rotations but 
simply places the magnetization vector in a favourable position with respect to the imperfections by 
introducing a 90 ° phase shift between the initial 90 ° pulse and the train of 180 ° pulses/56) Composite 
pulses compensate the individual rotations themselves, and so so should be superior. (In this 
application, error-dependent phases of the B-type composite pulses may be compensated by using an 
even number of echoes. O'~)) Actually this application of composite pulses proves disappointing on 
closer inspection. It turns out that in the Meiboom-Gill method, the major effect of the pulse 
imperfections is to 'lock' the transverse magnetization along its initial position, which tends to 
overcome interference from field fluctuations and other perturbations, and often actually improves 
the appearance of the multiple-echo train. The locking effect is reduced if the compensated pulses are 
introduced, so here the more highly-compensated sequence often behaves in an apparently worse 
manner. This 'double-edged' nature of pulse imperfections is a common feature of many experiments 
and has often made it harder than anticipated to demonstrate the benefits of composite pulses. 

Another application of accurate broadband cycles which can be conceived is one where very dense 
pulse sequences are applied to coupled spin systems for long periods of time in order to create 
evolution under an effective Hamiltonian which contains scalar couplings but no chemical shift 
terms ('isotropic mixing')/s2- 84) If the correlations between coherences are mapped out using two- 
dimensional spectroscopy, ~5'6) transfer of information between quite distant spins can be 
demonstrated. Almost any dense pulse sequence suppresses chemical shift interactions leaving scalar 
couplings, but only broadband cycles could do this without producing any other overall rotation of 
the spin system. There are cases where this might be useful, since the high symmetry of the pure 
isotropic coupling Hamiltonian is responsible for a large number of selection rules, leading to a 
considerable simplification of the two-dimensional spectrumJ 62) Bax et al. ~85~ have also proposed a 
variant of this method in which alternating-phase spin-locking is applied for the mixing instead of a 
sequence of discrete n pulses. If composite pulses are interposed between the periods of opposite 
phase irradiation, this variant is less sensitive to off-resonance effects. The compensated mixing 
sequence which has been suggested is (flo 3001so 600 flaso 3000 601so)", where fl is large and n is a 
small integer. 

5.3. Manipulations o f  Coherences 

Composite pulses are definitely useful in improving the accuracy of coherence transfer processes. 
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They are especially important if a pulse occurs in the middle of the evolution period in a two- 
dimensional experiment, so that the frequencies in the spectrum should be linear combinations of 
the evolution frequencies of particular pairs of coherences before and after the pulse. This is the case 
in two-dimensional J-spectroscopy, t86) where a 180 ° pulse occurs in the middle of the evolution 
period to transfer the accumulated phase of one coherence to another related by spin inversion 
[eqn.(16)]. It is also true in heteronuclear two-dimensional experiments, where a centrally-placed 
180 ° pulse on one spin species is used for removing heteronuclear coupling frequencies in the co 1- 
dimension. (a7) 180 ° pulses are also often used in multiple-quantum spectroscopy, (~'2) to refocus 
magnet inhomogeneity, and in two-dimensional nuclear Overhauser spectroscopy, (88'a9) where they 
are introduced with variable timing so as to shift the frequencies of zero-quantum interference 
peaks. (9°'91) In all these experiments, it is important that the 180 ° pulse induces only the desirable 
coherence transfers, otherwise unwanted lines appear in the two-dimensional spectrum. The 
suppression of such artefacts by composite pulses has been demonstrated, (92) and their consistent use 
can be recommended. However it is wise to remember that strong coupling, like pulse imperfections, 
can also cause an unwanted mixing of coherences, so that not all unwanted spectral lines can always 
be removed by introducing composite pulses. In the case of heteronuclear correlation spectroscopy, 
it is therefore better to use full broadband decoupling by a sequence like WALTZ-16 rather that to 
introduce a central 180 ° (composite) pulse to produce decoupled frequencies in the ~ol-dimension. 193) 

Measurement of spin-spin relaxation times in coupled spin systems by multiple-echo trains also 
requires accurate 180 ° pulses to avoid loss of control over the coherences. Advantages in using 
composite 180 ° pulses could be demonstrated. (34) However it must be pointed out again that only in 
very weakly-coupled 'model' systems can successive coherence transfers be carried out accurately 
enough, and even in favourable cases the 180 ° pulses must be very widely separated. If closely-spaced 
180 ° pulses are used, coherent averaging theory may be used to derive an effective Hamiltonian 
which is independent of the precise rotation angles, t~°~ so it is more or less irrelevant if composite 
pulses are used in this limit anyway. The intermediate regime with pulses spaced by durations 
comparable to the inverse of the chemical shift differences produces very complicated dynamics 
which are not very informative. All in all, spin-spin relaxation time measurements do not turn out to 
be a very favourable field for exploiting composite pulses. 

Composite pulses are useful in overcoming problems of resonance offset and r.f. inhomogeneity in 
experiments designed to excite multiple-quantum coherence or multiple-spin order, such as 
homonuclear and heteronuclear polarization transfer and multiple-quantum filtering methods. In 
these techniques the density operator is passed through a series of unitary transformations designed 
to drive it into a specific form, and the effect of pulse imperfections is usually cumulative. For  
example, in double-quantum filtering of carbon-13 spectra in order to detect selectively low- 
abundance ~3C-13C pairs ('INADEQUATE'(941), the desired signal in the usual method may be 
shown to be roughly proportional to {1-5(f2/~o°) 2 }, where it is assumed for simplicity that the two 
spins have almost equal offsets f~. In practice, an r.f. field o9°/2n'12.5 kHz might be available 
(corresponding to a 90 ° pulse length of 20#s), so a loss of about half the signal may be predicted for 
~3C resonances separated by only 8 kHz in resonance frequency, or I00 ppm at 80 MHz, a not 
uncommon situation. Such a strong offset-dependence is indeed observed. (3a~ The loss in signal is in 
general even more serious for experiments involving higher-order coherences or more pulses. 

Experiments like these can be compensated in general only by using composite pulses of type A or 
B1, incorporated into the pulse sequence in a careful and consistent way such as to take into account 
of supplementary z-rotations, as has been described in Section 4.3. The performance of an 
INADEQUATE sequence incorporating composite pulses of type B1, eqn.(109), is compared with 
that of the uncompensated pulse sequence in Fig.19, for the natural abundance ~3C-13C satellite 
spectrum of crotonaldehyde, which extends over almost 180 ppm. The 90 ° pulse length was 18/zsec, 
an experimentally more realistic value than that used in Ref.(38). The off-resonance compensation is 
obvious from the observed spectral intensitites, enhancements of factors of three being observed for 
some satellites. It is interesting to observe that a noticeable enhancement in intensity was observed 
even when both participating spins were quite close to the carrier; One can therefore honestly 
recommend this pulse sequence to be used routinely. (The main peak signals were poorly suppressed 



104 M.H. LEVITT 

0 

b 
CI 

2'18mm 

0~ H 
HIC. C~ ~C-CH 3 A 

C2 
C3 C4 

1 
' '1, 

5ppm 

C 

d 

÷ 

FiG. 19. Double-quantum filtered 13C-13C satellite spectra (INADEQUATE spectra) obtained at 75MHz on a 
modified Bruker CXP-300 spectrometer. (a) Crotonaldchyde, (b) conventional ~aC spectrum (one transient), (c) 
and (d) expanded 1aC-13C satellite regions filtered through (_+2)-quantum coherence (94) without and with 
compensation for resonance offset effects during the pulses (1024 transients~. The main peak signals were poorly 
suppressed in both cases for unknown reasons and have been deleted from the spectra shown for the sake of 
clarity. For (d) the composite pulse sequence of eqn.(108) with tl =0  was used. The r.f. field strength was 
tol/2~r = 13.2 kH~ There is a clear enhancement of the satellite signals in (d) which is due to offset compensation. 
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in both non-compensated and compensated spectra and have been whited out in the plots shown; 
the poor suppression seems to derive from an unidentified stability problem on our instrument and 
is not relevant to the compensation issue.) 

6. PRACTICAL IMPLEMENTATION 

In this Section we discuss how to implement composite pulses in practice, assuming there is an 
instrument available equipped with a versatile pulse programme r and an accurate (preferably digital) 
phase shifter. 

Composite pulses may normally be implemented in the pulse programme by simply chaining 
together instructions for pulses of different phase. Experience has shown that it is not necessary to 
leave a delay between the pulses to let the phases 'settle'. Transients will occur anyway whether or 
not this is done, and inter-pulse delays will degrade the performance at large resonance offsets. 
However it is usually recommended to preset the phase of the carrier to the phase of the first element 
in the composite pulse before the transmitter gate is turned on, and to hold the phase to that of the 
last element for a few/zsec after the pulse is turned off. This is especially important if phase-cycling is 
done to select particular coherence transfer pathways. ~79) Phase presetting ensures that if the pulse 
sequence is shifted in phase, the overall propagator is simply rotated around the z-axis, includin9 
minor transient effects at the beginning and end of the pulse. (This recommendation is valid whether 
or not composite pulses are used.) The suppression of unwanted pathways is improved by this 
means. 

Especially when phase cycling is used, it is highly convenient, but not essential, to be able to place 
the composite pulses in a subroutine to which an overall phase can be passed. All the 'internal'  phases 
of the composite pulse can then be calculated with respect to this overall phase. In addition, when 
using composite pulses with supplementary z-rotations, the subroutine can keep track of the 
accumulating phase rotations making explicit calculation on the lines of eqns.(104),(105) 
unneccessary. The pulse programming software available at the ETH in Ztirich allows such facilities. 
It incorporates a small compiler written in ASPECT-2000 assembler code and runs on a modified 
Bruker CXP-300 spectrometer equipped with a commercial (Interface Technology RSM-232) pulse 
programmer and home-built 15 ° digital phase shifters. Pulse programmes are written in a custom- 
built high-level language with similar appearance to the current Varian system, but are more 
versatile and are compiled in less than a second. The pulse programmer hardware itself is not 
intelligent but fast enough to execute complicated multiple-pulse cycles such as are common in 
solids. 

It is strongly recommended that an oscilloscope, coupled into the transmitter output, is available 
for examining the pulse sequences by eye, since some pulse programming systems, may introduce 
hidden delays, or get confused when many short pulses follow each other in rapid succession. It is 
usually possible to check the timing of the phase shifts within a composite pulse by the the brief 
'spikes' in reflected power. 

It is usually best to verify at first the performance of composite pulses in a very simple application. 
For example, a composite 180 ° pulse can be checked by measuring the degree of inversion of 
equilibrium z-magnetization. The intensity of the signal is measured after a second 90 ° 'read' pulse 
which need not be composite. At least two scans should be combined, the second having the 
composite pulse shifted in phase by 180 ° to remove signals deriving from stray single-quantum 
coherence produced by the composite pulse. (This is much more reliable than attempting to defocus 
the transverse magnetization by applying a static field gradient.) A composite 180 ° pulse should give 
a distinctly higher intensity of inverted signal than a single 180 ° pulse. If this is not the case then the 
pulse programmer timing or phase shifts may be suspected. 

The tempting 'short-cut' of assessing a composite 180 ° pulse by measuring the 'direct' signal it 
creates when applied to thermal equilibrium magnetization is potentially ambiguous and should be 
avoided. One often finds in fact that the composite 180 ° pulse gives larger residual signals than a 
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single 180 ° pulse. This does not indicate that the composite pulse does not work but is an illusory 
effect deriving from destructive interference. In an inhomogeneous r.f. field, the signal is a sum of 
contributions form different parts of the sample. Composite 180 ° pulses should lead to smaller 
intensities of the individual signal components than a single pulse, but the overall signal also 
depends on the relative phases of the signal components. For  a single 1800 pulse, applied on- 
resonance, the y-magnetization is given to first-order in &o~ by 

<I,> + -~ - (~&oJoJ°) .  (110) 

If the r.f. field distribution is symmetrical around oJ °, the net signal is zero (this assumes a perfectly 
homogeneous static field B o, otherwise the r.f. inhomogeneity can be partially refocussed during the 
formation of the free induction decay; but even in this case, the integral of the spectral line is zero). 
On the other hand, if a composite pulse 909018009090 is applied to z-magnetization, the transverse 
magnetization is given to second order by 

<I,> + ~ -~lrJcoffm°) 2. (111) 

The transverse magnetization always has the same sign, so when averaged over a r.f. field 
distribution the composite pulse may give a larger net signal than a single pulse. But this is only the 
result of fortuitous destructive interference when using the single pulse, and the effect is usually 
absent in an actual experiment. 

Similar effects exist for composite 90 ° pulses in inhomogeneous r.f. fields. Thus the net z- 

magnetization produced by a single 90 ° pulse can be set to zero by suitable choice of the pulse 
duration, whilst that produced by 9009090 cannot, although the latter gives smaller individual 
contributions. Again, one must decide if such destructive interference effects are present in the actual 
experiment which is to be performed. 

The more complicated procedures of type A or B1 are also best tried out on some simple 
application first, especially to test if the supplementary z-rotations have been correctly taken into 
account. Of course for these sequences an intelligent pulse programming software system is a great 
asset, and may make the implementation almost invisible. 

7. UNORTHODOX APPLICATIONS 

It has recently been recognized that the concept of applying a series of non-commuting rotations 
to the spin system has applications reaching beyond the compensation of pulse imperfections. Two 
of the 'unorthodox' applications which have been proposed involve not fighting against 
inhomogeneous r.f. fields, but using them in the one case to obtain spatial selectivity of NMR 
responses, and in the other case to cause a destructive phase dispersal of unwanted signals whilst 
leaving desired signals coherent. Another 'unorthodox' application is to extend the concept of 
compensating rotations to evolution under Hamiltonians non-linear in the spin angular momentum 
operators. All of these applications are still under development and not much detail will be given 
here. 

7.1. Radio-Frequency Field Selection 

The development of surface coils for detection of NMR signals inside large, intact objects, such as 
living subjects, has led to problems of achieving spatial selectivity of the NMR responses. Spatial 
selectivity may be achieved by applying static field gradients and frequency-selective r.f. pulses, (95) 
but an attractive, 'mobile' solution would be to use the spatial variation of r.f. field produced by the 
surface coil itself to select the desired volume. This requires a method of selectively exciting spins 
experiencing a particular value of r.f. field, and would ideally be insensitive to the precise resonance 
frequency of those spins. Bendall eta / .  (96) suggested a method involving phase cycling a series of 
180 ° pulses to cut out signals experiencing unwanted r.f. fields. The problem with this method is that 
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each individual 180 ° pulse has only a poor selectivity, so that many 180 ° pulses must be used, which 
must be cycled independently, requiring many experiments. Shaka et a/. t4s'97'gs) and Tycko et al. t46) 

independently suggested using composite 180 ° pulses which have an intrinsic r.f. field selectivity. 
This cuts down greatly the number of experiments which must be combined. 

Increasing the r.f. field selectivity of a pulse sequence is the exact opposite of r.f. field 
compensation and has been termed 'retrograde' compensation. (43) The ideal retrograde compensated 
180 ° pulse produces a spin inversion only for co~ '-'co ° and produces a rotation around the z-axis for 
other r.f. field values. Just as for compensated 180 ° pulses, iterative expansion procedures can be 
developed to generate retrograde compensated pulses. The above authors both suggested the 
retrograde compensation expansion 

R(m + 1) _ ~(.,) R(.,)RO,,) (112) o - -  "'~_ (~ 0 @ 

where ~b= 120 °. Shaka et al. (43) also showed that the same procedure with q~=90 ° is useful for 
obtaining an initial 'coarse' retrograde compensation which can then be followed u p  with a 'fine' 
adjustment by using (~= 120 °. They recommended the sequence (4a) 

180018090180180180120180z101803o018024018033o1806o . (113) 

Consulting Fig.18, this sequence does indeed give good r.f. selectivity close to resonance. But it is 
clear that it is highly offset-sensitive. Some suggestions for reducing this problem have been made, 
by combining different experiments, (97) and this aspect is undergoing further development. 

7.2. Composite z-Pulses 

Rotations of the spin density operator by an angle flo about the z-axis can be achieved by a 
composite pulse sequence 9027o(fl°)09090, where all pulses are assumed ideal. (35) For instruments 
equipped with phase shifts only in steps of 90 °, this proves an attractive way to simulate other 
phases, since a rotation of the spin density operator through 8 ° about the z-axis is equivalent to a 
shift in the phase of the reference frame through - flo. Thus the effect of an arbitrary phase shift can 
be mimicked simply by applying a sequence of pulses with orthogonal phases. Applications to 
various experiments in multiple-quantum spectroscopy have been reported. (99'1°°) 

The advent of versatile and accurate digital phase shifters has caused this application to decrease 
in importance, since the rotation produced by a z-pulse is dependent on ideal pulse performance, 
whilst a digital phase shifter may be constructed to be almost arbitrarily precise. If necessary, the 
outer 90 ° pulses may be compensated (using sequences of type A or B2), but there is no apparent way 
to compensate the central (fl°)o pulse. However this sensitivity of the central pulse to effects such as 
r.f. inhomogeneity may be turned to advantage as follows. Suppose the r.f. field is only slightly 
inhomogenous, so that the outer 90 ° pulses may be considered ideal, whilst the central pulse is 
deliberately made long so as to amplify the effect of the small r.f. field variations. Then the sandwich 
90270(80)09090 implements an inhomogeneous z-rotation, in which volume elements in different r.f. 
fields are rotated about the z-axis through different angles. If the duration of the central pulse is 
made long compared to the inverse of the spread in r.f. fields, an inhomogeneous z-rotation is 
generated with a rotation angle so strongly spatially-dependent as to be pseudo-random. 

Such a long z-pulse is clearly useless for simulating r.f. phase shifts. However it produces a similar 
effect to a static field gradient pulse, except that it does not disturb the field-frequency lock or 
produce eddy currents in shim coils or probe housing (although other effects such as sample heating 
may be produced). Therefore long composite z-pulses may be used to select coherences according to 
their order, t41) Suppose two long z-pulses are applied, of unequal durations T and Kz, on either side 
of some pulse sequence which mixes coherences of different orders. A coherence Ir)(s l  of order pt,S) 
accumulates a phase factor e x p ( -  ipt'S)col(r)z)) during the first inhomogeneous z-pulse, where col(r) is 
the spatially-dependent r.f. field. For a sufficiently long z-pulse, the coherence defocusses completely. 
Now suppose the coherence Ir>(sl is transferred to a different coherence [m)(n[ by the mixing 
sequence, and the second inhomogeneous z-pulse applied. The accumulated phase factor for the 
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pathway [r)(sl---~lm)(n[ is exp{-i(pt'S~+xp°'~)o91(r)z}. Contributions to the signal taking this 
pathway are spatially defocussed in phase unless pt'S)= - x p  t'=). If this condition is satisfied, the 
defocussing is exactly reversed and the pathway is spatially coherent. In this case a 'rotary coherence 
transfer echo 't41) is formed, which represents a way of selecting signal components on the basis of 
their history of coherence orders, just as in phase cycling, with the difference that ideally only one 
experiment has to be performed. Thus the time requirements of various experiments can be reduced, 
or alternatively, the method can be combined with phase cycling to yield high suppression ratios of 
unwanted signals. 

Some experimental results are shown in Fig.20, for double-quantum filtering of spectra from a 
mixture of A 2 and AX spin systems. Details are given in the caption. The technique basically works, 
although an undesirable reduction in the intensity of the AX peaks is produced, since only one of 
either (+2) or ( -2)-quantum coherences can be refocussed simultaneously, whilst in selection of 
double-quantum coherence by phase-cycling, both may be retained. Nevertheless the method may be 
useful in cases where experimental time would be excessive if full phase-cycling were employed, and 
signal-to-noise ratio is sufficient. 

a b 

I I 
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.L_ 
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Fla. 20. Use of inhomogeneous z-pulses for selection of coherence orders. Spectra are of a mixture of proton A2 
and AX spin systems, and are scaled to correct for the fact that they were taken with a different number of 
transients. (a) Conventional spectrum (one transient) (b) Spectrum obtained by (+2)-quantum excitation, 
selection of ( + 2)-quantum coherences by a 4-step phase cycle, and excitation of observable magnetization with a 
90 ° pulse (4 transients). (c) Spectrum obtained by (+2)-quantum excitation, an inhomogeneous z-pulse of 
duration 200psec, a 90 ° pulse, and an inhomogenous z-pulse of duration 400psec (one transient). The pair of z- 
pulses filter out (+2)-quantum coherences. (d) Combination of phase cycling and inhomogeneous z-pulses (4 

transients). (From Ref. 41.) 
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The implementation of unorthodox rotations by composite pulses is not restricted to rota- 
tions about the z-axis. For example, Caravatti et al. ~1°~) have described sequences such as 
35.3~ss 1204s35.3s~s to induce rotations of the spin system through 120 ° about the tetrahedral axis 
(1,1,1), with applications in solid-state heteronuclear correlation spectroscopy; It is worth pointing 
out that the somewhat simpler sequence 9090900 produces the same rotation. 

7.3. Composite Bilinear Rotations 

By applying pulse sequences which are long enough for spin-spin couplings to operate, it is often 
possible to cause the density operator to evolve under an effective Hamiltonian which is bilinear in 
the spin angular momentum operators. For example the effective Hamiitonian Hat 
=Ek,k,27tJkk,ll~ylk.r, may be produced by applying a pulse sequence 900-r/2-180o-Z/2~00 to a 
weakly-coupled spin system. Such evolution operators are often referred to as 'bilinear rotations'. 
They have been shown to be useful concepts in many experiments such as decoupling, I1 o2) multiple- 
quantum NMR, tl°a) and various forms of two-dimensiona! correlation spectroscopyJ 62'1°4'1°s) A 
particular useful bilinear rotation is used in experiments on dilute heteronuclear spin systems, where 
the following pulse sequence on abundant spins I and dilute spins S leads to evolution under the 
effective Hamiltonian H.tf =EkltJk2IkySz, where Jk are heteronuclear couplings between the S spin 
and the neighbouring/-spins: 

I: 90o-Z/2-180o-Z/2-90 o 
S: 1800. (114) 

(An additional 180 ° rotation of the S-spins also results, but this is usually immaterial.) Because there 
is a large difference in the magnitude of one-bond IS scalar couplings and longer-range couplings, 
this sequence allows selective manipulation of l-spins directly bonded to an S-spin, and has been put 
to a large number of ingenious purposes/1 o2.104-1 o8) 

Difficulties with the bilinear rotation arise if the duration r of the sequence is not matched to the 
one-bond couplings Jk. (Usually, z should be 1/Jk). This might be impossible to achieve if there is a 
range of one-bond couplings, and leads to a sort of 'inhomogeneity' in the bilinear rotations, the 
'inhomogeneity' in this case not being spatial but from spin system to spin system. Similar methods 
as used to correct r.f. field variations in ordinary pulses can sometimes be extended to the bilinear 
case. For example, Garbow et al. ~102) suggested the sequence 

I: 90o-Z/2-1809o-Z/2-9027o-r-1809o-Z-909o-Z/2-1809o- Z/2-90o 
S: 180o 180o 1800 (115) 

which provides a bilinear rotation exp{--in~k2lk~S~} relatively insensitive to variations in the 
coupling constants, by analogy with the composite pulse 90018090900 . Wimperis et al. ~1°8~ have 
taken these compensation schemes further and developed bilinear rotation equivalents of the 121 
and 1331 'solvent suppression' sequences, t52-54'1°9'11°~ as well as bilinear selective excitation 
sequences which produce appreciable signal only for/-spins directly bonded to an S-spin/1 o6-1081 

Despite these fair successes, analogies between bilinear rotations and normal rotations must be 
drawn with care. In general the evolution of many-spin systems over periods long compared to the 
couplings occurs in spaces of much higher dimension than the three-dimensional spaces assumed for 
composite pulses and selective excitation sequences. In the heteronuclear examples given above, the 
analogies work fairly well because the large magnitude of one-bond IS couplings allows the much 
weaker II  couplings to be ignored so that the evolution of the system may be restricted to a set of 
independent three-dimensional spaces {2Ik~Sz, 2lkySz, Ikz } for each spin I k. In homonuclear spin 
systems, this simplification is not feasible, and compensated bilinear rotations cannot be created by 
known methods. 

The compensated multiple-quantum rotations suggested recently by Barbara et al. ~111~ are closely 
related to compensated bilinear rotations but as they seem most likely to be applicable to the NMR 
of spins I = 1, they will be discussed in the following Section. In addition we should mention J-cross 
polarization sequences which may also be compensated for coupling variations by forming 
analogies with conventional composite pulses/127) 

JFNMRS 18/2-D 
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7.4. Virtual Composite Pulses 

Sometimes composite pulses are useful in thinking about the way an experiment works as well as 
for improving its performance. This is often the case when a sequence contains a pulse with a 
nominal rotation angle not equal to 90 ° or 180 °. It is frequently enlightening to consider such a 
pulse, for example (fl°)9o, as a 'virtual composite pulse' such as 9001-(fl°)~]901 so. When the sequence is 
looked at this way its operation may become easier to visualize. A good example is the DEPT 
sequence for polarization transfer from/-spins to S-spins. t~12~ The usual pulse sequence involves a 
(fl°)90 pulse applied to the I-spins; the particular functional dependencies of the transferred 
polarization on the flip angle of this pulse depend on the type of spin system and can be used to 
achieve 'subspectral editing' of IS, I2S and I3S systems. However this is a purely mathematical 
argument and yields little physical insight. It is more revealing to substitute for the (fl°)9 o pulse a 
virtual composite pulse. It is then found t103~ that the first 90 ° pulse of the sandwich creates multiple- 
quantum coherence amongst the I-spins, of orders (+ 1) for IS systems, (+2) for IES systems, and 
both (_+1) and (_+3) for 13S systems. The variation of the pulse flip angle in the usual DEPT 
technique corresponds to a variation of the [(flo)~] rotation, i.e. phase cycling in the usual way to 
distinguish between the different orders of I spin coherence created in the different spin systems. The 
final 90 ° pulse in the sandwich transfers this multiple-quantum coherence (partially) into observable 
S-spin magnetization. The functional dependencies are fully explained and it is seen how this pulse 
sequence relates to other techniques such as multiple-quantum filtered spectroscopy. ~9'*~ It is also 
apparent that non-idealities may cause "breakthrough" of systems with a larger number of/-spins 
into the subspectra of those with a smaller number, but not the other way around, since multiple- 
quantum orders of magnitude p can only be sustained in systems of larger than, or equal to, p spins- 
1/2. 

In fact it usually turns out of advantage to actually do the experiment this way as well as just think 
about it. T M  ~ 3) The experiment is then closely related to compensation schemes involving sequences 
of type B 1 discussed above, and displays reduced sensitivity to pulse errors. Of course the expansion 
of a pulse into a sequence of two pulses sandwiching a phase shift is the basis of the construction of 
many composite pulses as discussed in Section 3. 

7.5. Composite Pulses in other Spectroscopies 

Composite pulses may also be used in other forms of coherent spectroscopy providing the 
technology exists for producing pulses of controllable relative phases, and assuming that relaxation 
times are not prohibitively short. A natural candidate is pulsed electron spin resonance, where the 
problem of large spectral widths compared to currently available pulsed microwave intensities 
exists. Unfortunately if the width of the spectrum is caused in this case by hyperfine couplings or g- 
tensor anisotropies, no composite pulse is yet known for improving the bandwidth of the excitation; 
the problem is analogous to increasing the bandwidth of a single 90 ° pulse in a single nuclear spin- 
1/2 system, which has not been achieved beyond the rough limit [2~co °. But it might be possible to 
enhance excitation bandwidths for the pulsed ESR of triplet states, where the spin dynamics are 
similar to spins I = 1. No applications have been reported however, to the knowledge of the author. 

Composite pulse techniques may be transferred in some cases to coherent optical spectro- 
scopy.t74- 76~ This has been made possible by the recent introduction of acousto-optic modulation 
technology for the generation of phase-shifted coherent laser pulses, t74) The method involves 
deflection of a laser beam by an r.f. acoustic wave induced in a suitable crystal; the phase 
information of the r.f. pulses is transferred completely to the diffracted optical beam. Of course 
coherent optical spectroscopy encounters quite different problems form NMR so the interesting 
pulse sequences are also different. In optical systems one is usually in a situation of 'extreme 
inhomogeneous broadening' in which the linewidths are much larger than the electric-dipole-laser 
interaction. These very broad lines cannot be excited uniformly, as is a realistic goal in NMR and 
one often hopes to maximize instead the integrated excitation over the line, without concerning 
oneself with the detailed structure within the line. Warren has investigated closely the properties of 
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phase-modulated sequences such as (floflt a0) ~, where n is large, and predicted by computer simulation 
an enhancement of the population inversion in a 2-level system, (76) which could also be verified 
experimentally. A similar effect was predicted in enhancement of the population inversion across the 
forbidden transition in optical 3-level systems. (76) 

At present the application of composite pulses, and shaped pulses, in coherent optics is still 
somewhat restricted in real applications by the power-handling capabilities of the acousto-optic 
modulation devices. Technological innovations in this area are to be expected. 

8. COMPOSITE PULSES IN SOLIDS AND LIQUID CRYSTALS 

NMR in anisotropic media encounters special problems. The spectra are dominated by large 
anisotropic interactions such as chemical shifts, quadrupolar splittings (for I>~1) and dipolar 
spin-spin couplings. "14) The considerable size of these .terms relative to the strength of the 
interaction of the spins with feasible r.f. fields is the principle cause of imperfect pulse performance. 
In this Section we discuss how composite pulses can help overcome this problem in favourable cases. 

In high magnetic field all interactions may be factored into a spatial part multiplied by a spin 
part. Heteronuclear dipolar couplings and anisotropic chemical shift telrms transform in the spin 
part as first-rank tensors (vectors), so that in cases where other interactions may be ignored, the 
techniques described in the earlier Sections may be applied. Offset-compensated composite pulses of 
types A, B1, B2 and B3 may all be used in the usual way. 

We are more concerned here with cases where the dominant interactions transform in the spin 
part as second-rank tensors, and the first-rank terms like chemical-shift or heteronuclear coupling 
terms may be ignored over the duration of the pulse. When second-rank dipolar spin-spin couplings 
or quadrupolar interactions are the predominant cause of imperfect pulse performance, the theory 
developed above for vector interactions is inapplicable, and different sorts of composite pulse must 
be found. 

There seem to be two distinct approaches to this problem. The first method is the most general. It 
sets out with the ambitious goal of compensating the effect of spectral broadening during the pulse, 
using only the fact that the interactions are second-rank in the spin variables, and not using any 
other knowledge of the system, such as the number of energy levels, etc. The second method, on the 
other hand, concentrates on one particular type of system, in the cases to be discussed a three-level 
system with unequal spacing, such as is found for spins I = 1 in an anisotropic environment or for 
isolated pairs of dipolar-coupled spins-I/2. The only parameter which is left free is then the size of 
the quadrupolar or dipolar interaction. The advantage of the first method is that, if successful, it 
would allow construction of composite pulses which may be used in a wide variety of systems. The 
second method is based on the expectation that by using as much information as possible, more 
compact and effective composite pulses can be built up. 

8.1. Coherent Averaging Method 

Coherent averaging theory is a suitable framework for designing a composite pulse based only on 
the second-rank transformation properties of the spin interactions and without any other 
assumption. The theory is the same as in Section 3.2. with the difference that the perturbation Hs=in 
is proportional to T2o, the M = 0 component of a second-rank tensor. (4s) Upon rotations, 7"2o mixes 
with the four other second-rank tensor components T2+ 1 and T2+ 2, with mixing coefficients given 
by the elements of the appropriate Wigner rotation matrix. The task of designing a composite pulse 
reduces to finding a set of rotations which are equivalent to the chosen ideal rotation, and such that 
the time average of the Wigner matrix elements in the interaction frame vanishes,/~(0) =0. 

The problem is closely related to disigning a multiple-pulse dipolar line-narrowing sequence, "°) 
where /.](0) for second-rank interactions should also be zero. However the ideal rotation in that case 
is also usually zero (the sequence is cyclic) and there is an additional constraint, that the time- 
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average of the interaction frame first-rank interactions does not vanish (finite 'scaling factor'). Many 
sequences with this property have been proposed, tg'~°) but the ones of most relevance here are the 
'windowless' cycles of Burum et  a l . "  a 5) ('windowless' means no gaps between the pulses). Burum et  al. 

showed that the time-average of interaction-frame second-rank tensors vanishes for particular 
sequences of six 90 ° pulses, amongst others 

900180909018018090 (116) 

The ideal propagator for this sequence is 180 o, so this sequence already represents a composite 180 ° 
pulse compensated to zeroth-order for second-rank interactions. Burum et  al. "15~ did not realize this 
possible application, however, and proceeded instead by "symmetrizing" the sequence (placing it 
next to its inverse, as defined in Section 3.4), and using the whole thing (now a cycle, called BLEW- 
12) for line-narrowing purposes. 

Tycko et  al. ~45) have recognized the potential of such sequences for broadband population 
inversion in systems with second-rank interactions. They recommend the sequence 

45o1809o901 so 18090450 (117) 

as a composite 180 ° pulse in solids. It is perhaps easiest to see that this also has/.~to~ = 0 by noting 
that it may be derived from (116) by permuting a 450 pulse; It may be shown that i f a  sequence has a 
vanishing average Hamiltonian, this will remain true if an element is permuted which commutes 
with the overall propagator, which is the case here. Tycko et  a/.(45) performed computer simulations 
and experiments on systems with small numbers of dipolar-coupled spins and could verify the 
improved population inversion. However the hopes for universality of such sequences were only 
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FIG. 21. Numerical simulations of (I~) ÷ for spin I =  1 as a function of quadrupolar splitting mo/2mt for the 
sequences (a) 180o, (b) 90o1809o9018018090, t115~ (c) 45o1809o901s01809o450, ~45~ (d) 45o90t8o135o459o9027o 
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partially satisfied. The enhancement of the spin inversion as against a single pulse, as predicted by 
numerical simulation, was strongly dependent on the configuration of the couplings between the 
spins. Also experimental results for squaric acid, which contains large numbers of coupled spins, 
were only presented for very low r.f. fields of 20 kHz, although r.f. fields exceeding 80 kHz are easily 
available. The variability in the performance of such sequences arises because of slow convergence of 
the Magnus expansion in realistic cases. In principle, some of the higher terms may be eliminated by 
using longer pulse sequences, but no such sequence has yet been suggested for arbitrary second-rank 
interactions. (The technique of 'symmetrization' ,  mentioned above, may be used for cyclic sequences 
to eliminate all odd terms R (m)(l°), but no such possibility is yet known for non-cyclic composite 
pulses.) 

Nevertheless, 450180909018018090450 is a useful composite 180 ° pulse for isolated spins I =  1 or 
small numbers of coupled spins-I/2. In Fig.21, computer simulations of ( l z )  + for a single spin-I 
system are shown for this sequence as well as for a single 180 ° pulse and the BLEW-6 sequence 
90ol 809o9018ol 8027o. These simulations were produced using a numerical diagonalization of the 
Hamiltonian in the presence of the r.f. field. The bandwidth of the inversion for the composite pulses 
is clearly greater than for a single 180 ° pulse. Also shown in this diagram is the performance of the 
sequence 45o901so135o459o9027o1359o45o9018o135 o to be described below. Experimental results 
obtained with the deuterium (spin 1) solid-state spectra of polycrystalline dS-phenylalanine are 
shown in Fig.22. These were obtained by measuring the z-magnetization immediately after a 
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FIG. 22. Experimental 2D lineshapes of dS-phenylalanine, obtained at 46 MHz by composite pulse echoes 
preceded by a composite 180 ° pulse, with 4-step phase cycling to select the longitudinal component after the 180 ° 
pulse. The full width of the line is 130 kHz, the r.f. field was oJt/2n= 59.5 kHz. (a) No inversion pulse, (b) after 
180o, (c) after 90o1809o901so1809o (d) after 45o1809o90tso1809o450, (e) after 45o901so135o45909027o1359o 
450902801350 . The 'horns' in (d) and (e) are possibly the result of molecular motion on the timescale of the 

inversion pulse. 
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(composite) 180 ° pulse by using the quadrupolar echo sequence 45o901801350-r:-459o902701359o-Zz 
(next Section). The 180 ° pulse was cycled through four orthogonal phases with signals added so as to 
suppress single or double quantum coherence unintentionally created by the inversion pulse. The 
single 180 ° pulse clearly achieves good inversion only for those crystallites in such orientations that 
the quadrupolar tensor is small. This seriously interferes with spin-lattice relaxation time 
measurements, especially when the spectral variation of TI is of interest. °~6) The increased 
bandwidth of the composite pulses is obvious from the improved appearance of the inverted spectral 
line shapes. The spectra shown were obtained with a moderate r.f. field strength of coff2rr = 54.3 kHz 
(corresponding to a 90 ° pulse of duration 4.6#sec). 

Tycko has also suggested the sequence 45o1351801359o45270 as a composite 90 ° pulse in systems 
with second-rank interactions. (44) However this sequence seems to suffer particularly badly from the 
slow convergence of the Magnus expansion and its performance is disappointing. 

8.2. Consecu t i ve  R o t a t i o n  M e t h o d  

Systems of isolated pairs of equivalent dipolar coupled spins-I/2, or isolated spin I =  1 systems, 
are simple enough that the dynamics during a pulse or arbitrary frequency or field strength may be 
solved analytically. "16-121) In the following we refer only to the spin I = 1  problem, but all 
conclusions also apply to spin-l/2 pairs if the words 'quadrupolar interaction' are replaced by 
'dipolar interaction'. In these systems there are three relevant eigenstates which are in general 
unequally spaced. The difference between the spacing between states I1 ) and 12) from that between 
states 12) and 13) is given by the quadrupolar interaction 2c%. This 'anharmonicity' varies according 
to the orientation of the tensor with respect to the static magnetic field, giving rise to the well-known 
'powder lineshapes' for non-oriented samples. 

Imperfect pulse performance arises because the r.f. field cannot be on resonance for both single- 
quantum transitions simultaneously, unless the quadrupolar splitting is very small. However it is 
usually possible to apply the irradiation very close to the mean frequency of the two transitions, 
which is only affected by relatively small second-order quadrupolar and chemical shift interactions. 
The system is then discribed by a single unknown, the quadrupolar splitting. 

The Hamiltonian in the presence of an r.f. field of phase ~b is given by 

H~ = H O + co t exp( - id~Iz)Ixexp(icklz) (118) 

where the first-order quadrupolar interaction is given by 

HQ = toQ~(3l z 2 _ l ( I  + 1)) (119) 

The non-commutation of the two terms in eqn.(118) is the cause of the trouble. 
It is convenient to express all interactions in terms of the single-transition operators, "2°'~2t) 

defined by 

I(: s) = ~]r) ( r l - ]s) (s[)  
I~ "s) = ~(Ir)<sl + Is><rl) 

l(rs) =~[r ) (s l - - l s ) ( r [ )  (120) r 

which have cyclic commutation relationships, for example 

[l(rs) /(rs)'l = i I(: s) (121) 
- y  _1 

and 

[/(r~) t (~')'1 = ½i 1(") (122) 
- x  , - x  J - y  • 

It is also convenient to introduce quadrupole polarization operators c39) Q(:S) defined by 

rs)  __  ( r t )  ( s t )  Q~ -~(Iz +lz  ) (123) 
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with properties 

Then we may write 

and 

[ Q~"), I( ")] = O, v = x , y , z  ; 

Q(,~) = o(~,) • o(,~) 4- o(~') + t~7) = 0; 
z ~z ~ ~z -- ~z 

Q~,,) = i~-) _ ½Q~[,); I~,,) _- ~Q~-) - Q~:,)). 
(124) 

ix = 2x/2(i~12) + i~23)) 
I ,  = 2x/2(I~ 12) +i(y23)) 
I ,  = 2i~13) 

HQ = COQQ(, TM 

The Hamil tonian  may be put in a more tractable form by expressing all operators  in the 'Utr 13) 
frame' defined by the t ransformation 

n 
-~  (13)  Ar=exp(i~-l~ 13))2_ A exp(-z~-Iy ). (125) 

By using eqns (121) and (122), the operators  I~, I r and I ,  become in this frame I x r = 2 l ~  (12), 
i T ' l l  (23) and r _2 ix .3) .  I . -  The quadrupole  term Q~13) is unchanged. The Hamil tonians  during - y - - - - - y  

pulses of phase 4 ,=0,  90 ° , 180 ° and 270 ° are: 

T 
H¢=o 

r 
H¢=9o 

r 
H¢ = 1so 

r 
H4~= 270 

(12)  (12) ' t  L- . ,  / '~(12) = (cOQlz + 2o91I~ ~ -  2~0~,  
1 . . . .  I ( 2 3 ) j . , .  ") , . ,  r ( 2 3 ) ' t _ _ L , . ,  I M 2 3 )  

= ~ ~ ' Q A z  . ~ w  I ~y  ! 2UJQ${z 

= ( O ) ~ i ( 1 2 ) _ 9 . , ,  1"(12)$ 1.~., / '1(12) 
x ~ z  ~ W l * x  1 - -  2 W Q ~ z  

/ t . , ~ ( 2 3 ) - -  9 t . ,  1 ( 2 3 h  1_,., t"t(23) 
~ - -  U J ~ z  z.,uJ 1 * y  5 -- 2 U J Q ~ z  . 

(126) 

Suppose we wish to design a composi te  90 ° pulse. In the U~ TM frame, this implies we wish to be able 
) I ( 2 3 )  to take the spin system from an initial  condit ion I r =  - 2 I ~  TM to a final state - I J = - _ _ y  . 

Neglecting the unimpor tant  change of subscript, this implies an interchange of states I1 > and f2> in 
this frame. Now from eqn.(126), a pulse of phase 4, = 0  or 4,= 180 ° acts as an effective rotat ion on the 
I1 >*-q2> transit ion in the U~ 13) frame; to interchange states I1 > and f2>, we require a 180 ° pulse in 
this space; this leads to the surprising corollary that a composi te  90 ° pulse in a three-level system has 
more in common with a 180 ° spin- l /2  pulse than with a 90 ° spin- l /2  pulse. If these suspicions are 
taken to their logical conclusion it may be shown (39) that a 180 ° pulse for spins-I /2 may be 
converted to a 90 ° pulse for spins-1 simply by dividing all pulse lengths by two, if the following 
condi t ions are met: 

(a) only 180 ° phase shifts are involved; 
(b) if the 180 ° pulse is of type B, then the phase of the overall rotat ion opera tor  must be linearly 

dependent  on offset. 
The pulse lengths should be divided by two because of the factor 2 in the term propor t ional  to o91 

in eqn.(126). Condi t ion (a) is also a consequence of eqns(126), which show that pulses of phases other 
than 0 and 180 ° do not  provide the necessary pure rotat ions in the 11)-- t2)  space. Condi t ion (b) 
arises because a l inear offset-dependent phase shift of the spin- l /2  180 ° composi te  pulse is converted 
into an apparent  time shift of the free induction decay after the spin-1 90 ° composi te  pulse. For  
powder spectra, it is essential to ensure that the t ime shift is uniform so that all signal components  
echo simultaneously (see below). 

Both condit ions are met to a fair approximat ion  by the two spin- l /2  180 ° composi te  pulses 
encountered earlier, 90o1801so270 o and 90o2701so180o3601so180o . These are both broadband 180 ° 
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pulses and the last also gives a nicely linear dependence of the phase on offset, with a propagator 
given to a good approximation by 

ex p( - i~lo-lz)ex p( - inl x)ex p(i~olo-I ~ ). (I 27) 

For the shorter sequence however, the phase-dependence shows appreciable deviations from 
linearity. This is of consequence when fine details of the quadrupolar lineshapes are of interest (see 
below). 

With pulse lengths divided by two, these sequences have propagators given in the U~ TM frame 
approximately by 

U r "" exp( - io~o (13))exp( - iObQ(z23))exp( - inl(~ 12)) (128) 

where 

and 

Ob = ~CoeT--cOQ/Cox) (129) 

Here Tis the total duration of the composite pulse. In eqn.(128), the rightmost operator induces the 
necessary interchange of states I1) and J2), the operator exp(-iObQ~ TM) commutes with the final 
condition I r, whilst the leftmost operator exp(-iOoQ~ TM) is responsible for the time-shift alluded to 
above. Thus sequences such as 450901 sol 350 and 4501351 so90o18018o90o give broadband excitation 
of coherence in spin-1 systems. (39) 

They may also be incorporated into quadrupole echo sequences (122) which are widely used in 
solid-state deuterium NMR to make accessible the first few points of the free-induction transient. 
Two composite pulses are applied with a phase difference of 90 ° separated by a time ~1 ; the echo 
occurs at time z2 given by, assuming eqn.(129) is valid, 

z 2 = z 1 + T/2 + 1/(2col) (130) 

Composite pulse echoes are a particularly important technique because the use of two 90 ° pulses 
seriously aggravates the effect of insufficient r.f. field when single 90 ° pulses are used; the previous 
solutions to this problem were to use pulses much shorter than 90 °, or to multiply the spectrum by a 
frequency-dependent correction factor which may be calculated analytically. The first of these 
methods leads to a large loss in signal intensity, and the second is only feasible when the distortions 
are relatively small. Composite pulses allow work with much lower r.f. fields than currently used, 
with large advantages in instrumental stability and much smaller heating effects. 

The performance of composite pulse echo sequences has been studied by computer simulation and 
by experiment; the conclusions outlined above have been generally vindicated. Figure 23 shows 
simulated intensities of y-magnetization at times given by eqn.(130) for the two composite pulse 
sequences, and at the theoretical echo maximum given by 't" 2 -~-~'1 + T/2(118) for a conventional two- 
pulse echo 90o--rl-909o-Z 2. The dependence of magnetization on the size of the quadrupole is clearly 
much reduced. In Fig.24 are shown some typical experimental results for dS-phenylalanine, with a 
fairly low r.f. field corresponding to a 90 ° pulse length of 6.2psec. Here the echo sequence 
4509018o135O-Zl-459o9027o 13590 was used. 

Broadband population inversions of spins-I can also be created by this type of pulse sequence by 
placing together three composite pulses, of phases 0,90 and 0. For example the sequence 
45090180135045909027013590450901801350 performs quite well in comparison with the sequences 
derived by coherent averaging theory, as has been demonstrated above. The propagator for such 
sequences may be written 

T,.~ (13) (23) (12) U - e x p ( - t O a Q z  )exp(-i0~Qz )exp(-irclx ) 
(~3~ (~2~ (23, x e x p ( - i O a Q  z )exp(-i0bQz )exp(-iltly ) 

x exp( - iOaQ(~ 13))exp( - i0/,Q(z23))ex p( - iztl(~ 12i) (131) 
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FIG. 23. Simulations of the y-magnetization <ly> ÷ for spin 1 as a function of the quadrupolar splitting for the 
quadrupolar echo sequences ( a ) 9 0 o - Z ] - 9 0 9 0 - 3 2 ;  Ta=TI + n/(4o91). (b) 45o9018o135o-31-4590902701350-32; 
32 = 31 + (3n + 2)/(4col). (c) 900180180900135180450 -- 3t - 909o18027o909o13527o459o - 32; "r2 = 31'+ (6n + 2)/(4o.) 1). 

(From Ref. 39.) 
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FIG. 24. Experimental spectral lineshapes for dS-phenylalanine after the quadrupolar echo sequences (a) 
90o-rl-909o-r2, (b)45o901so135o-ZlM59o9027o1359o-Z 2. The r.f. field strength was o~l/2rc = 40.3 kHz. 
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which may be rearranged as 

by using such properties as 
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U r-~ exp { - i(O. + ObXQ~' 37 + Q~2 37 + Q~127) } 
× exp( - inI(~ 127)exp( - inI~r237)exp( - i~I(~ 12)) (132) 

ex p( - inl~ rsT) Q~rO = Q~rt)ex p( _ ini~,~)) (133 ) 

Now the first term in eqn. (132) is unity through eqn. (124), and the last three terms, on 
transformation into the laboratory frame become 

7~ 7Z 
U "  exp( - i2-Ix)exp( - i J r )exp(  - i}Ix) 

= exp( - i~l~)exp( - inl~)exp(i~l~). (134) 

This is a 180 ° rotation with a phase of 45 °. It is likely that more compact inversion pulses for spins 
I = 1 can also be produced using the same formulation, but none have so far been discovered. 

There are a number of subtleties when applying all of these pulse sequences to systems of practical 
interest. Firstly, transient effects arising when suddenly turning on the pulse or switching its phase in 
the tuned resonance circuit were neglected, as was the finite bandwidth of the probe when observing 
the NMR signal. Both of these effects are significant for very wide quadrupolar spectra. Secondly, 
the above treatment assumed a quadrupolar tensor which is static on the time-scale of the pulse 
sequence, which is valid in the very fast or very slow motion regimes. But if motion on an 
intermediate time scale is present, the effect of the composite pulse is not as simple as presented here 
and must be analyzed by more sophisticated methods. Strange lineshape distortions due to motional 
effects have indeed been observed when using composite pulses. (12a) Thirdly, Olejniczak et al. (~ 237 
have pointed out that quadrupolar echoes using the pulse sequence 45o90~80135o can produce 
slightly distorted lineshapes even in the absence of motion, which is because the phase shift term in 
eqn.(127) is not closely linear for this sequence, so that different echo components may refocus at 
slightly different times. The distortions are however almost absent if 450135 ~ ao90018018o90o is used. 

8,3. Double-Quantum Excitation 

Another manipulation often performed on spins I = 1 in solids, other than inversion of population 
and excitation of single-quantum coherence, is excitation of coherence between the two extreme 
eigenstates I I )  and 13). In high field, double-quantum coherence does not provide a macroscopic 
magnetic dipole moment and cannot be observed directly, but its precession may be made visible by 
transfer to single-quantum coherence by a suitable pulse sequence and employing a variant of two- 
dimensional spectroscopy. (27 Double-quantum coherence of spins ! =  1 is insensitive to the first- 
order quadrupolar interaction and hence can allow measurement of chemical shift tensors which are 
normally buried under this much larger term. "247 In combination with magic-angle spinning, 
deuterium double-quantum coherence can provide liquid-like isotropic shift spectra from solid 
samples in favourable cases. ~ 25) 

Double-quantum coherence is most often excited by a simple pair of strong 90 ° pulses. (A centrally 
placed 180 ° pulse can also be included to remove dependence on chemical shifts.) The efficiency of 
excitation is given by sin(coQT), where z is the separation of the pulses, and if a third pulse is applied 
and the echo taken at a further time z, the intensity of the signal is proportional to sin2(c%z), 
assuming uniform spin-spin relaxation times. If the first two pulses are separated by a time longer 
than the inverse of the powder linewidth, so that the inhomogeneously damped free induction 
response produced by the first pulse has vanished when the second is applied, the fast oscillating 
contributions may be ignored, giving an uniform intensity of 1/2 for the double-quantum transferred 
signal, independent of tot~ This condition may be referred to as 'uniform double-quantum 
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excitation', and is desirable because only under these conditions can the chemical shift tensor be 
easily extracted from the double-quantum spectrum. 

There are a number of problems with this method, however. Firstly, waiting a long time before the 
second pulse is applied results in an appreciable loss of signal. Any sharp singularities in the 
spectrum extend the free induction decay considerably but must be allowed to decay. Secondly, in 
cases with motion the transverse relaxation times vary across the spectrum and again cause non- 
uniform double-quantum intensities. Thirdly, if the pulse power is limited, the outer edges of the 
spectrum are poorly excited (this can of course be overcome by using composite pulses of the type 
discussed above). These problems have stimulated attempts to find different ways of exciting double- 
quantum coherence uniformly. 

A suggestion has been made by Barbara et al. (111) They noted that if the pulses are strong with 
respect to the quadrupole interaction, the sequence 909o-Z/2-18027o-Z/2-909o has a propagator 

09 o 
U = exp( - icoozI~ 13))exp( - i~--rQtz 13)). (135) 

The term on the left is a rotation in the double-quantum space through an angle cooz and the term on 
the right commutes with it. The sequence can therefore be compensated for the effects of variation in 
co o by methods analogous to compensation of r.f. field variations in spin-l/2 pulses. A difference is 
that phase shifts of ~b in ordinary space are experienced as 2~b in double-quantum space, so all pulse 
phases must be divided by two if the compensation effect is to be retained (this is reminiscent of, but 
not the same as, the division of all pulse lengths by two in the previous section). For example the A- 
type composite 90 ° pulse 2700360169180s3180178 suggested by Tycko (4s) can be converted, with a bit 
ofjiggery-pokery, into the quadrupole-compensated double-quantum excitation sequence (111) 

90o-3 Z/2-1801so-3 Z /2-95.59o-2Z-180o-2z-l129o-Z-1801so-z-l O7.59o-Z-180o-r-90t s o. (136) 

The sequence was tried out in the oriented spin-l/2 pair of CH2C1 z dissolved in a liquid crystal and 
some increased insensitivity to the magnitude of the coupling could be demonstrated (in fact, the 
effect of the magnitude of the dipolar coupling was simulated by changing the value of the delays 
between pulses). However, there are good reasons to believe such sequences will not behave very well 
in cases of practical importance: (a) their duration is very long, so a loss of signal possibly even 
greater than with the two pulse sequence is to be expected through transverse relaxation; (b) 
compensation is to be expected only if the transverse relaxation times are uniform; and (c) the 
'bandwidth' achieved is slightly greater than with just two pulses, but appears insufficient to make 
measurement of undistorted chemical shift tensors feasible. Nevertheless, the principle is interesting, 
and some of the other directions suggested, such as compensated double-quantum excitation by long 
single pulses applied near the mean frequency of the single-quantum transitions, (1t7) or by 
modulated pulses, its) or compensated double-quantum excitation in two-spin systems in isotropic 
liquids, might be more practical. 

8.4. Quadrupolar Order 

We should also mention the excitation of quadrupolar order ~1 a) in spin I = 1 systems, which is 
important in measurement of slow molecular motions. (126) The usual excitation sequence is 
900-T-4590, with a subsequent 450 pulse for observation of the quadrupolar order (Jeener-Broekaert 
sequence. (63)) The 45 ° pulses are rather insensitive to the quadrupolar interaction and need not be 
compensated(119) (They behave analoguously to 90 ° pulses in spin-l/2 systems.) The excitation may 
however be improved by replacing the first 900 pulse by a composite sequence such as 
4501351 ao90o1801 co900 • 
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9. C O N C L U D I N G  R E M A R K S  

The subject of composi te  pulses has  many  facets. They may be viewed as a purely technical  device 
to achieve improved pulse performance;  thei r  value may be assessed more  as a s t imula t ion  to th ink  
more  deeply abou t  the opera t ion  of par t icular  N M R  experiments  (decoupling is a good example); 
they have also provoked interest  as an abs t rac t  exercise in non- l inear  dynamics,  in a system which is 
experimental ly well-defined, s imple enough for exhaust ive numerica l  calculation, and  yet complex 
enough to provide surprises and  chal lenging unsolved problems. The n u m b e r  of different ways of 
producing composi te  pulses which have been advocated,  and  the confl ict ing in te rpre ta t ions  which 
have appeared  in the l i terature,  often border ing  on controversy,  are evidence enough of that. And yet 
composi te  pulses are very easy to t reat  compared  with con t inuous  modula t ion  techniques,  the theory 
of which is still in its infancy. 
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