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Evidence for the utility of quantum 
computing before fault tolerance

Youngseok Kim1,6 ✉, Andrew Eddins2,6 ✉, Sajant Anand3, Ken Xuan Wei1, Ewout van den Berg1, 
Sami Rosenblatt1, Hasan Nayfeh1, Yantao Wu3,4, Michael Zaletel3,5, Kristan Temme1 & 
Abhinav Kandala1 ✉

Quantum computing promises to offer substantial speed-ups over its classical 
counterpart for certain problems. However, the greatest impediment to realizing its 
full potential is noise that is inherent to these systems. The widely accepted solution 
to this challenge is the implementation of fault-tolerant quantum circuits, which is 
out of reach for current processors. Here we report experiments on a noisy 127-qubit 
processor and demonstrate the measurement of accurate expectation values for 
circuit volumes at a scale beyond brute-force classical computation. We argue that this 
represents evidence for the utility of quantum computing in a pre-fault-tolerant era. 
These experimental results are enabled by advances in the coherence and calibration 
of a superconducting processor at this scale and the ability to characterize1 and 
controllably manipulate noise across such a large device. We establish the accuracy  
of the measured expectation values by comparing them with the output of exactly 
verifiable circuits. In the regime of strong entanglement, the quantum computer 
provides correct results for which leading classical approximations such as pure-state- 
based 1D (matrix product states, MPS) and 2D (isometric tensor network states, 
isoTNS) tensor network methods2,3 break down. These experiments demonstrate a 
foundational tool for the realization of near-term quantum applications4,5.
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It is almost universally accepted that advanced quantum algorithms 
such as factoring6 or phase estimation7 will require quantum error cor-
rection. However, it is acutely debated whether processors available at 
present can be made sufficiently reliable to run other, shorter-depth 
quantum circuits at a scale that could provide an advantage for prac-
tical problems. At this point, the conventional expectation is that the 
implementation of even simple quantum circuits with the potential 
to exceed classical capabilities will have to wait until more advanced, 
fault-tolerant processors arrive. Despite the tremendous progress 
of quantum hardware in recent years, simple fidelity bounds8 sup-
port this bleak forecast; one estimates that a quantum circuit 100 
qubits wide by 100 gate-layers deep executed with 0.1% gate error 
yields a state fidelity less than 5 × 10−4. Nonetheless, the question 
remains whether properties of the ideal state can be accessed even 
with such low fidelities. The error-mitigation9,10 approach to near-term 
quantum advantage on noisy devices exactly addresses this ques-
tion, that is, that one can produce accurate expectation values from 
several different runs of the noisy quantum circuit using classical  
post-processing.

Quantum advantage can be approached in two steps: first, by dem-
onstrating the ability of existing devices to perform accurate computa-
tions at a scale that lies beyond brute-force classical simulation, and 
second by finding problems with associated quantum circuits that 
derive an advantage from these devices. Here we focus on taking the 

first step and do not aim to implement quantum circuits for problems 
with proven speed-ups.

We use a superconducting quantum processor with 127 qubits to 
run quantum circuits with up to 60 layers of two-qubit gates, a total of 
2,880 CNOT gates. General quantum circuits of this size lie beyond what 
is feasible with brute-force classical methods. We thus first focus on 
specific test cases of the circuits permitting exact classical verification 
of the measured expectation values. We then turn to circuit regimes 
and observables in which classical simulation becomes challenging 
and compare with results from state-of-the-art approximate classical 
methods.

Our benchmark circuit is the Trotterized time evolution of a 2D 
transverse-field Ising model, sharing the topology of the qubit proces-
sor (Fig. 1a). The Ising model appears extensively across several areas in 
physics and has found creative extensions in recent simulations explor-
ing quantum many-body phenomena, such as time crystals11,12, quan-
tum scars13 and Majorana edge modes14. As a test of utility of quantum 
computation, however, the time evolution of the 2D transverse-field 
Ising model is most relevant in the limit of large entanglement growth 
in which scalable classical approximations struggle.

In particular, we consider time dynamics of the Hamiltonian,
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in which J > 0 is the coupling of nearest-neighbour spins with i < j and 
h is the global transverse field. Spin dynamics from an initial state can 
be simulated by means of first-order Trotter decomposition of the 
time-evolution operator,
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in which the evolution time T is discretized into T/δt Trotter steps and 
θR ( )Z Z Ji j

 and θR ( )X hi
 are ZZ and X rotation gates, respectively. We are not 

concerned with the model error owing to Trotterization and thus take 
the Trotterized circuit as ideal for any classical comparison. For exper-
imental simplicity, we focus on the case θJ = −2Jδt = −π/2 such that the 
ZZ rotation requires only one CNOT, 

where the equality holds up to a global phase. In the resulting circuit 
(Fig. 1a), each Trotter step amounts to a layer of single-qubit rotations, 
RX(θh), followed by commuting layers of parallelized two-qubit rota-
tions, RZZ(θJ).

For the experimental implementation, we primarily used the IBM 
Eagle processor ibm_kyiv, composed of 127 fixed-frequency transmon 

qubits15 with heavy-hex connectivity and median T1 and T2 times of 
288 μs and 127 μs, respectively. These coherence times are unprec-
edented for superconducting processors of this scale and allow the 
circuit depths accessed in this work. The two-qubit CNOT gates between 
neighbours are realized by calibrating the cross-resonance interac-
tion16. As each qubit has at most three neighbours, all ZZ interactions 
can be performed in three layers of parallelized CNOT gates (Fig. 1b). 
The CNOT gates within each layer are calibrated for optimal simultane-
ous operation (see Methods for more details).

We now see that these hardware performance improvements enable 
even larger problems to be successfully executed with error mitigation, 
in comparison with recent work1,17 on this platform. Probabilistic error 
cancellation (PEC)9 has been shown1 to be very effective at providing 
unbiased estimates of observables. In PEC, a representative noise model 
is learned and effectively inverted by sampling from a distribution of 
noisy circuits related to the learned model. Yet, for the current error 
rates on our device, the sampling overhead for the circuit volumes 
considered in this work remains restrictive, as discussed further below.

We therefore turn to zero-noise extrapolation (ZNE)9,10,17,18, which 
provides a biased estimator at a potentially much lower sampling cost. 
ZNE is either a polynomial9,10 or exponential19 extrapolation method 
for noisy expectation values as a function of a noise parameter. This 
requires the controlled amplification of the intrinsic hardware noise 
by a known gain factor G to extrapolate to the ideal G = 0 result. ZNE 
has been widely adopted in part because noise-amplification schemes 
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Fig. 1 | Noise characterization and scaling for 127-qubit Trotterized 
time-evolution circuits. a, Each Trotter step of the Ising simulation includes 
single-qubit X and two-qubit ZZ rotations. Random Pauli gates are inserted to 
twirl (spirals) and controllably scale the noise of each CNOT layer. The dagger 
indicates conjugation by the ideal layer. b, Three depth-1 layers of CNOT gates 
suffice to realize interactions between all neighbour pairs on ibm_kyiv.  

c, Characterization experiments efficiently learn the local Pauli error rates λl,i 
(colour scales) comprising the overall Pauli channel Λl associated with the lth 
twirled CNOT layer. (Figure expanded in Supplementary Information IV.A).  
d, Pauli errors inserted at proportional rates can be used to either cancel (PEC) 
or amplify (ZNE) the intrinsic noise.
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based on pulse stretching9,17,18 or subcircuit repetition20–22 have circum-
vented the need for precise noise learning, while relying on simplistic 
assumptions about the device noise. More precise noise amplification 
can, however, enable substantial reductions in the bias of the extrapo-
lated estimator, as we demonstrate here.

The sparse Pauli–Lindblad noise model proposed in ref. 1 turns out 
to be especially well suited for noise shaping in ZNE. The model takes 
the form eL, in which L is a Lindbladian comprising Pauli jump opera-
tors Pi weighted by rates λi. It was shown in ref. 1 that restricting to jump 
operators acting on local pairs of qubits yields a sparse noise model 
that can be efficiently learned for many qubits and that accurately 
captures the noise associated with layers of two-qubit Clifford gates, 
including crosstalk, when combined with random Pauli twirls23,24. The 
noisy layer of gates is modelled as a set of ideal gates preceded by some 
noise channel Λ. Thus, applying Λα before the noisy layer produces an 
overall noise channel ΛG with gain G = α + 1. Given the exponential form 
of the Pauli–Lindblad noise model, the map Leα  is obtained by simply 
multiplying the Pauli rates λi by α. The resulting Pauli map can be sam-
pled to obtain appropriate circuit instances; for α ≥ 0, the map is a Pauli 
channel that can be sampled directly, whereas for α < 0, quasi- 
probabilistic sampling is needed with sampling overhead γ−2α for some 
model-specific γ. In PEC, we choose α = −1 to obtain an overall zero-gain 
noise level. In ZNE, we instead amplify the noise10,25–27 to different gain 
levels and estimate the zero-noise limit using extrapolation. For prac-
tical applications, we need to consider the stability of the learned noise 
model over time (Supplementary Information III.A), for instance, owing 
to qubit interactions with fluctuating microscopic defects known as 
two-level systems28.

Clifford circuits serve as useful benchmarks of estimates produced 
by error mitigation, as they can be efficiently simulated classically29. 
Notably, the entire Ising Trotter circuit becomes Clifford when θh is 
chosen to be a multiple of π/2. As a first example, we therefore set the 
transverse field to zero (RX(0) = I) and evolve the initial state |0⟩⊗127 
(Fig. 1a). The CNOT gates nominally leave this state unchanged, so the 
ideal weight-1 observables Zq all have expectation value 1; owing to the 
Pauli twirling of each layer, the bare CNOTs do affect the state. For each 
Trotter experiment, we first characterized the noise models Λl for the 

three Pauli-twirled CNOT layers (Fig. 1c) and then used these models 
to implement Trotter circuits with noise gain levels G ∈ {1, 1.2, 1.6}. 
Figure 2a illustrates the estimation of ⟨Z106⟩ after four Trotter steps  
(12 CNOT layers). For each G, we generated 2,000 circuit instances 
in which, before each layer l, we have inserted products of one- 
qubit and two-qubit Pauli errors i from L drawn with probabilities 
p = (1 − e )/2l i

G λ
,

−2( −1) l i,  and executed each instance 64 times, totalling 
384,000 executions. As more circuit instances are accumulated, the 
estimates of ⟨Z106⟩G, corresponding to the different gains G, converge 
to distinct values. The different estimates are then fit by an extrapolat-
ing function in G to estimate the ideal value ⟨Z106⟩0. The results in Fig. 2a 
highlight the reduced bias from exponential extrapolation19 in com-
parison with linear extrapolation. That said, exponential extrapolation 
can exhibit instabilities, for instance, when expectation values are 
unresolvably close to zero, and—in such cases—we iteratively down-
grade the extrapolation model complexity (see Supplementary Infor-
mation II.B). The procedure outlined in Fig. 2a was applied to the 
measurement results from each qubit q to estimate all N = 127 Pauli 
expectations ⟨Zq⟩0. The variation in the unmitigated and mitigated 
observables in Fig. 2b is indicative of the non-uniformity in the error 
rates across the entire processor. We report the global magnetization 
along ẑ, ∑M Z N= � �/z q q , for increasing depth in Fig. 2c. Although the 
unmitigated result shows a gradual decay from 1 with an increasing 
deviation for deeper circuits, ZNE greatly improves agreement, albeit 
with a small bias, with the ideal value even out to 20 Trotter steps, or 
60 CNOT depth. Notably, the number of samples used here is much 
smaller than an estimate of the sampling overhead that would be 
needed in a naive PEC implementation (see Supplementary Informa-
tion IV.B). In principle, this disparity may be greatly reduced by more 
advanced PEC implementations using light-cone tracing30 or by 
improvements in hardware error rates. As future hardware and software 
developments bring down sampling costs, PEC may be preferred when 
affordable to avoid the potentially biased nature of ZNE.

Next, we test the efficacy of our methods for non-Clifford circuits 
and the Clifford θh = π/2 point, with non-trivial entangling dynam-
ics compared with the identity-equivalent circuits discussed in 
Fig. 2. The non-Clifford circuits are of particular importance to test, 
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Fig. 2 | Zero-noise extrapolation with probabilistic error amplification. 
Mitigated expectation values from Trotter circuits at the Clifford condition 
θh = 0. a, Convergence of unmitigated (G = 1), noise-amplified (G > 1) and noise- 
mitigated (ZNE) estimates of ⟨Z106⟩ after four Trotter steps. In all panels, error 
bars indicate 68% confidence intervals obtained by means of percentile 
bootstrap. Exponential extrapolation (exp, dark blue) tends to outperform 

linear extrapolation (linear, light blue) when differences between the converged 
estimates of ⟨Z106⟩G≠0 are well resolved. b, Magnetization (large markers) is 
computed as the mean of the individual estimates of ⟨Zq⟩ for all qubits (small 
markers). c, As circuit depth is increased, unmitigated estimates of Mz decay 
monotonically from the ideal value of 1. ZNE greatly improves the estimates 
even after 20 Trotter steps (see Supplementary Information II for ZNE details).
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as the validity of exponential extrapolation is no longer guaranteed  
(see Supplementary Information V and ref. 31). We restrict the circuit 
depth to five Trotter steps (15 CNOT layers) and judiciously choose 
observables that are exactly verifiable. Figure 3 shows the results as 
θh is swept between 0 and π/2 for three such observables of increasing 
weight. Figure 3a shows Mz as before, an average of weight-1 ⟨Z ⟩ observa-
bles, whereas Fig. 3b,c show weight-10 and weight-17 observables. 
The latter operators are stabilizers of the Clifford circuit at θh = π/2, 
obtained by evolution of the initial stabilizers Z13 and Z58, respectively, 
of |0⟩⊗127 for five Trotter steps, ensuring non-vanishing expectation 
values in the strongly entangling regime of particular interest. Although 
the entire 127-qubit circuit is executed experimentally, light-cone and 
depth-reduced (LCDR) circuits enable brute-force classical simula-
tion of the magnetization and weight-10 operator at this depth (see 
Supplementary Information VII). Over the full extent of the θh sweep, 
the error-mitigated observables show good agreement with the exact 
evolution (see Fig. 3a,b). However, for the weight-17 operator, the light 
cone expands to 68 qubits, a scale beyond brute-force classical simula-
tion, so we turn to tensor network methods.

Tensor networks have been widely used to approximate and com-
press quantum state vectors that arise in the study of the low-energy 
eigenstates of and time evolution by local Hamiltonians2,32,33 and, more 
recently, have been successfully used to simulate low-depth noisy 
quantum circuits34–36. Simulation accuracy can be improved by increas-
ing the bond dimension χ, which constrains the amount of entangle-
ment of the represented quantum state, at a computational cost 
scaling polynomially with χ. As entanglement (bond dimension) of a 
generic state grows linearly (exponentially) with time evolution until 
it saturates the volume law, deep quantum circuits are inherently dif-
ficult for tensor networks37. We consider both quasi-1D matrix product 
states (MPS) and 2D isometric tensor network states (isoTNS)3 that 
have O χ( )3  and O χ( )7  scaling of time-evolution complexity, respectively. 
Details of both methods and their strengths are provided in Methods 

and Supplementary Information VI. Specifically for the case of the 
weight-17 operator shown in Fig. 3c, we find that an MPS simulation of 
the LCDR circuit at χ = 2,048 is sufficient to obtain the exact evolution 
(see Supplementary Information VIII). The larger causal cone of the 
weight-17 observable results in an experimental signal that is weaker 
compared with that of the weight-10 observable; nevertheless, mitiga-
tion still yields good agreement with the exact trace. This comparison 
suggests that the domain of experimental accuracy could extend 
beyond the scale of exact classical simulation.

We expect that these experiments will eventually extend to circuit 
volumes and observables in which such light-cone and depth reduc-
tions are no longer important. Therefore, we also study the perfor-
mance of MPS and isoTNS for the full 127-qubit circuit executed in Fig. 3, 
at respective bond dimensions of χ = 1,024 and χ = 12, which are primar-
ily limited by memory requirements. Figure 3 shows that the tensor 
network methods struggle with increasing θh, losing both accuracy and 
continuity near the verifiable Clifford point θh = π/2. This breakdown 
can be understood in terms of entanglement properties of the state. 
The stabilizer state produced by the circuit at θh = π/2 has an exactly flat 
bipartite entanglement spectrum, found from a Schmidt decomposi-
tion of a 1D ordering of the qubits. Thus, truncating states with small 
Schmidt weight—the basis of all tensor network algorithms—is not 
justified. However, as exact tensor network representations generi-
cally require bond dimension exponential in circuit depth, truncation 
is necessary for tractable numerical simulations.

Finally, in Fig. 4, we stretch our experiments to regimes in which the 
exact solution is not available with the classical methods considered 
here. The first example (Fig. 4a) is similar to Fig. 3c but with a further 
final layer of single-qubit Pauli rotations that interrupt the circuit-depth 
reduction that previously enabled exact verification for any θh (see Sup-
plementary Information VII). At the verifiable Clifford point θh = π/2, 
the mitigated results agree again with the ideal value, whereas the 
χ = 3,072 MPS simulation of the 68-qubit LCDR circuit markedly fails 
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Fig. 3 | Classically verifiable expectation values from 127-qubit, depth-15 
Clifford and non-Clifford circuits. Expectation value estimates for θh sweeps 
at a fixed depth of five Trotter steps for the circuit in Fig. 1a. The considered 
circuits are non-Clifford except at θh = 0, π/2. Light-cone and depth reductions 
of respective circuits enable exact classical simulation of the observables for all 
θh. For all three plotted quantities (panel titles), mitigated experimental results 
(blue) closely track the exact behaviour (grey). In all panels, error bars indicate 
68% confidence intervals obtained by means of percentile bootstrap. The 
weight-10 and weight-17 observables in b and c are stabilizers of the circuit at 
θh = π/2 with respective eigenvalues +1 and −1; all values in c have been negated 
for visual simplicity. The lower inset in a depicts variation of ⟨Zq⟩ at θh = 0.2 
across the device before and after mitigation and compares with exact results. 

Upper insets in all panels illustrate causal light cones, indicating in blue the 
final qubits measured (top) and the nominal set of initial qubits that can 
influence the state of the final qubits (bottom). Mz also depends on 126 other 
cones besides the example shown. Although in all panels exact results are 
obtained from simulations of only causal qubits, we include tensor network 
simulations of all 127 qubits (MPS, isoTNS) to help gauge the domain of  
validity for those techniques, as discussed in the main text. isoTNS results  
for the weight-17 operator in c are not accessible with current methods (see 
Supplementary Information VI). All experiments were carried out for G = 1, 1.2,  
1.6 and extrapolated as in Supplementary Information II.B. For each G, we 
generated 1,800–2,000 random circuit instances for a and b and 2,500–3,000 
instances for c.
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in the strongly entangling regime of interest. Although χ = 2,048 was 
sufficient for exact simulation of the weight-17 operator in Fig. 3c, an 
MPS bond dimension of 32,768 would be needed for exact simulation 
of this modified circuit and operator with θh = π/2.

As a final example, we extend the circuit depth to 20 Trotter steps 
(60 CNOT layers) and estimate the θh dependence of a weight-1 observ-
able, ⟨Z62⟩, in Fig. 4b, in which the causal cone extends over the entire 
device. Given the non-uniformity of device performance, also seen in 
the spread of single-site observables in Fig. 2b, we choose an observ-
able that obtains the expected result ⟨Z62⟩ ≈ 1 at the verifiable θh = 0 
point. Despite the greater depth, the MPS simulations of the LCDR 
circuit agree well with the experiment in the weakly entangling regime 
of small θh. Although deviations from the experimental trace emerge 
with increasing θh, we note that the MPS simulations slowly move in 
the direction of the experimental data with increasing χ (see Supple-
mentary Information X) and that the bond dimension needed to exactly 
represent the stabilizer state and its evolution to depth 20 at θh = π/2 
is 7.2 × 1016, 13 orders of magnitude larger than what we considered (see 
Supplementary Information VIII). For reference, as the memory 
required to store an MPS scales as χ( )2O , already a bond dimension of 
χ = 1 × 108 would require 400 PB, independent of any runtime consid-
erations. Furthermore, full-state tensor network simulations are already 
unable to capture the dynamics at the exactly verifiable five-step circuit 
in Fig. 3a. We also note that, given the large unmitigated signal, there 
may be opportunity to study time evolution at even larger depths on 
the current device.

For execution times, the tensor network simulations in Fig. 4 were run 
on a 64-core, 2.45-GHz processor with 128 GB of memory, in which the 
run time to access an individual data point at fixed θh was 8 h for Fig. 4a 
and 30 h for Fig. 4b. The corresponding quantum wall-clock run time 
was approximately 4 h for Fig. 4a and 9.5 h for Fig. 4b, but this is also 
far from a fundamental limit, being at present dominated by classical 
processing delays that stand to be largely eliminated through concep-
tually straightforward optimizations. Indeed, the estimated device 
run time for the error-mitigated expectation values using 614,400 
samples (2,400 circuit instances for each gain factor and readout error 

mitigation, with 64 shots per instance) at a conservative sampling 
rate of 2 kHz is only 5 min 7 s, which can be even further reduced by 
optimization of qubit reset speeds. On the other hand, the classical 
simulations may also be improved by methods besides the pure-state 
tensor networks considered here, such as Heisenberg operator evolu-
tion methods, which have recently been applied to non-Clifford simu-
lations38. Another approach is to numerically emulate the ZNE used 
experimentally. For example, it was recently argued that the finite-χ 
truncation error introduced by tensor-product compression mim-
ics experimental gate errors34. It would thus be natural to develop a 
theory for extrapolating tensor network state expectation values in 
the bond dimension χ for time evolution, as has been done in the case 
of ground-state search39. Alternatively, one can more directly emulate 
ZNE by introducing artificial dissipation into the dynamics engineered 
so that the resulting mixed-state evolution has reduced tensor-product 
bond dimension, as—for example—in dissipation-assisted operator 
evolution40, and extrapolate results with respect to the strength of the 
dissipation. Although such methods40,41 can successfully capture the 
long-time dynamics of the low-weight observables of a 1D spin chain, 
their applicability to high-weight observables in 2D at intermediate 
times is not clear—particularly as these methods are explicitly con-
structed to truncate complex operators.

The observation that a noisy quantum processor, even before 
the advent of fault-tolerant quantum computing, produces reliable 
expectation values at a scale beyond 100 qubits and non-trivial circuit 
depth leads to the conclusion that there is indeed merit to pursuing 
research towards deriving a practical computational advantage from 
noise-limited quantum circuits. Over recent years, substantial research 
effort has been directed to develop and demonstrate candidate heuris-
tic quantum algorithms5 that use noise-limited quantum circuits to esti-
mate expectation values. We have now reached reliability at a scale for 
which one will be able to verify proposals and explore new approaches 
to determine which can provide utility beyond classical approxima-
tion methods. At the same time, these results will motivate and help 
advance classical approximation methods as both approaches serve 
as valuable benchmarks of one another. However, even with improved 
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Fig. 4 | Estimating expectation values beyond exact verification. Plot 
markers, confidence intervals and causal light cones appear as defined in Fig. 3. 
a, Estimates of a weight-17 observable (panel title) after five Trotter steps for 
several values of θh. The circuit is similar to that in Fig. 3c but with further 
single-qubit rotations at the end. This effectively simulates the time evolution 
of the spins after Trotter step six by using the same number of two-qubit gates 
used for Trotter step five. As in Fig. 3c, the observable is a stabilizer at θh = π/2 
with eigenvalue −1, so we negate the y axis for visual simplicity. Optimization of 
the MPS simulation by including only qubits and gates in the causal light cone 

enables a higher bond dimension (χ = 3,072), but the simulation still fails to 
approach −1 (+1 in negated y axis) at θh = π/2. b, Estimates of the single-site 
magnetization 〈Z62〉 after 20 Trotter steps for several values of θh. The MPS 
simulation is light-cone-optimized and performed with bond dimension 
χ = 1,024, whereas the isoTNS simulation (χ = 12) includes the gates outside  
the light cone. The experiments were carried out with G = 1, 1.3, 1.6 for a and 
G = 1, 1.2, 1.6 for b, and extrapolated as in Supplementary Information II.B.  
For each G, we generated 2,000–3,200 random circuit instances for a and 
1,700–2,400 instances for b.
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classical methods, impending order-of-magnitude improvements in 
gate fidelities42 and speed of superconducting quantum systems will 
drive substantial enhancements in accessible circuit volumes and paint 
an increasingly bright picture of the utility of noisy quantum computers.
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Device calibration
The speed of cross-resonance-based CNOT gates is dependent on the 
qubit–qubit detuning and, typically, gate speeds across the device 
are chosen independently to minimize individual gate errors43. This 
leads to a large spread in CNOT times across the device. Noting that the 
speed of each parallelized CNOT layer is limited by the slowest gate in 
the layer, we develop a new tune-up scheme for large-scale processor 
calibration that optimizes the layer rather than the individual gates. 
First, the control and target qubits are assigned to each gate layer to 
reduce crosstalk and leakage from transmon-frequency collisions. The 
slowest gate in each layer then has its duration carefully optimized. 
Finally, all gates in the layer are fixed to this duration and calibrated 
simultaneously with error-amplification sequences44. Compared with 
independently calibrated gates, the layer duration is unchanged, but 
gates are slower with lower drive amplitudes, reducing any leakage 
arising from multi-photon transitions. The simultaneous calibration 
also ensures that the gates are calibrated as they are implemented in 
the circuit.

Noise model
Throughout this work, we amplify gate noise by means of a learned 
noise model. For this model, following ref. 1, a general Pauli channel is 
approximated by ρ ρΛ( ) = exp[ ]( )L  with a sparse Pauli–Lindblad  
generator

∑ρ λ P ρP ρ( ) = ( − ).
i

i i i
†L

Here the jump operators are chosen to be Pauli operators Pi with P P I=i i
†  

and the model is parameterized by the non-negative coefficients λi. 
This model can be rewritten as

ρ w w P P ρΛ( ) = ( ⋅ + (1 − ) ⋅ )( ),
i

i i i i
†○

in which w = (1 + e )/2i
λ−2 i  and  O O O O(⋅) = ( )i

n
i n n=1 −1 1○ ∘ ∘⋯∘  represents  

the composition of operators and O(⋅)(ρ) = O(ρ). In other words, we 
can express Λ(ρ) as a composition of simple Pauli maps. For physical 
noise channels, in which all λi ≥ 0, the composition consists of simply 
Pauli channels. By allowing non-zero coefficients λi only for Pauli terms 
Pi whose support corresponds to a single qubit or a pair of connected 
qubits, we obtain a sparse noise model that can be efficiently learned 
and that, despite its simplicity, is able to capture crosstalk errors1. It is 
readily seen that αexp[ ]L  is obtained by scaling all λi by α. For α ≥ 0, the 
resulting noise model is a composition of Pauli channels. Samples from 
this channel can be obtained by independently sampling Pi with prob-
ability 1 − wi for each of the simple channels and multiplying the results. 
For α < 0, the resulting coefficients 1 − wi are generally negative, leading 
to a non-physical noise map. Sampling in that case can still be done, 
albeit in a quasi-probabilistic manner. Doing so results in a sampling 
overhead of γ2, in which γ λ= exp(∑ 2 )i i .

Brute-force simulations
The simplest, most accurate and most limited method is simulation 
of a collection of the state of M qubits as a dense vector of 2M complex 
coefficients. All unitary gates, irrespective of locality, can be applied 
directly to the vector. Expectation values are found by vector–matrix–
vector product of the conjugated state, operator and state. We use this 
approach for simulations up to 30 qubits.

Tensor network methods
For circuits of more than 30 qubits, we used 1D and 2D tensor network 
state methods45. For a quantum state on M qubits, tensor network 
methods approximate the 2M complex coefficients for the wavefunc-
tion amplitude as a network of contracted tensors containing O Mχ( )p  

coefficients, in which p is an integer depending on the method. Here 
we consider MPS2,32,33 with p = 2 and isoTNS3 with p = 4. MPS represent 
a quantum state as a network of rank-3 tensors that, when contracted 
or multiplied together, give an approximation to the wavefunction 
amplitude for each basis state. isoTNS are a restriction of projected 
entangled pair states, a 2D generalization of MPS to square lattices in 
which the network consists of rank-5 tensors. The accuracy and com-
putational cost of both MPS and isoTNS depend on the bond dimension 
χ. MPS methods have the advantage of well-developed algorithms, yet 
suffer from fundamental limitations of using a 1D method to simulate 
a 2D system. isoTNS methods, on the other hand, are inherently 2D 
methods but suffer from unavoidable sources of error not present for 
MPS, though these can be systematically reduced with increasing bond 
dimension.

Data availability
The datasets generated and analysed during this study are available at 
https://doi.org/10.6084/m9.figshare.22500355.
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