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1. INTRODUCTION

An enormous body of radio-frequency (r.f.) pulse sequences has been developed in recent years for
the purpose of ‘spin manipulations’. Examples include excitation of single-quantum and multiple-
quantum coherences,"'? inversion and equalization of spin populations®® and transfer of

*Present address: Francis Bitter National Magnet Laboratory, MIT NW14-5122, Cambridge, Massachusetts

02139, USA.

JPNMRS 18/2~A 61



62 M. H. LeviTr

information from one coherence to another.®® ~® Sequences have also been devised for changing the
effective Hamiltonians under which the spin system evolves, as in homonuclear®'® and
heteronuclear!! ~?® decoupling experiments. Despite the universal use of pulse excitation in
modern Fourier transform NMR, until recently the r.f. pulse itself had not been subject to much
criticism and the following question had not often been asked: is there in fact a better, or a more
versatile way to manipulate the spin system than by isolated r.f. pulses of constant amplitude and
phase?

It is clear that the standard rectangular r.I. pulse may be considered a special case of a general
irradiation strategy in which both amplitude and phase (or equivalently frequency) are made
arbitrarily time-dependent. It is likely that in the future a better understanding of modulated pulses
will lead to the adoption of irradiation schemes quite different from the rectangular pulse familiar
today. The technology for the generation of r.f. pulses with continuously modulated amplitude and
phase is starting to become available and shapes with highly intriguing properties have been
suggested.?#~31) However in this article we will concentrate on a class of less general modulation
schemes which at the moment are easier to implement and to analyze than the continuous cases.
Instead of one pulse, simply a series of rectangular pulses of possibly different durations and phases
is applied. Such ‘composite pulses’3? % are usually designed to perform an equivalent
transformation of the spin system as an ideal single pulse. However in many cases composite pulses
may remedy some of the defects of the conventional single pulse by being less sensitive to the precise
value of the r.f. field, and less demanding on peak power. In addition composite pulses may be
designed with characteristics quite different from ordinary pulses, for example the ability to perform
rotations about the z-axis of the rotating frame,®***V or to operate selectively within a narrow band
of r.f. field strengths. (434647

Perhaps the first recognizable composite pulses are the so-called ‘2-1-4" sequences of Redfield.* !
These sequences were designed to improve the frequency selectivity of a single rectangular r.f. pulse.
Consider a single weak pulse applied at the frequency of some desired resonance, for example from a
solute spin system in low concentration. By careful adjustment of pulse power and duration, it is
possible to arrange that a signal resonating at a slightly different frequency, for example from the
solvent, is left unexcited. For a single pulse the adjustment is highly critical and in the case of a
spatially inhomogeneous r.f. field, the ‘nulling’ of the solvent resonance is impossible to achieve
completely. Redfield recognized that a suitable series of pulses could behave better in this respect;
the null could be made broader and less dependent on r.f. field strength. Recently these ‘solvent
suppression’ sequences have been developed further. The one which is now generally agreed to
behave most satisfactorily is the ‘1-3-3-1" sequence discovered independently by Turner®? and
Hore.33:5% Hore’s article®® is referred to as a detailed treatment of solvent suppression sequences.
We will not refer to them again, except to note that at least in the initial stages of their treatments,
all of these workers employed a linear approximation of the spin response which allows the
dependence of excitation on offset from resonance to be estimated by the Fourier transform of the
pulse sequence. They were successful because this is not a bad approximation for only small
perturbations of the system. The same applies to the ‘DANTE’ sequence for selective excitation by a
chain of short, evenly-spaced pulses developed by Morris et al.*> Again it can be shown that for
small perturbation, the true frequency response corresponds rather closely to the Fourier transform
of the excitation.

Linear response theory becomes less useful as a basis for design of a pulse sequence once large
perturbations of the spin system are performed. The true frequency response of a 90° pulse, as
calculated from the Bloch equations, still resembles the Fourier transform of the excitation quite
closely, but strong deviations are already observed for 180° pulses.®*® For flip angles of more than
180° the linear response of the system bears little resemblance to the true behaviour. In cases like
heteronuclear decoupling, where many complete rotations are applied, use of Fourier arguments is
completely false. Indeed decoupling sequences based on fallacious spectral arguments are now being
superseded by composite pulse cycles which use an accurate calculation of the spin evolution well
outside the linear regime.*!1~2%
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For spin systems in isotropic liquids, where spin—spin couplings are small, it is relatively easy to
determine the response far outside the linear regime. If relaxation is neglected, the effect of the r.f.
pulse is to rotate the magnetization vector (or generally, the spin density operator) about some axis
in the rotating frame dependent on the r.f. field strength, the offset of the carrier frequency from
resonance, and the phase of the r.f. field. The precise dependencies are well-known and will be given
below. The important point here is that the spin system experiences a rotation in a three-
dimensional space, which is usually relatively easy to visualize without the help of the linear
approximation. It becomes possible to start putting several rotations together in carefully-chosen
combinations to cancel out each other’s deviations from ideality, a possibility suggested by the
use of error-compensation schemes in multiple-spin echo*® and multiple-pulse homonuclear
decoupling experiments.!?

At first sight however, it does seem unlikely that a small number of pulses can be made to cancel
each other’s imperfections. With hindsight, it may be made to seem more probable by noting that
since rotations form a group, any given rotation can be produced by an infinite number of possible
combinations of other rotations. Amongst this multitude of ways of doing exactly the same thing, it
is likely that there are some which behave better than a single rotation if each is subject to the same
non-idealities. For example, the single rotation 180, and the composite rotation 904,180,904, are
equivalent if all rotations are ideal. (The notation is used in which B, denotes a rotation though an
angle § about an axis in the xy-plane, at an angle ¢ from the x-axis.) It may be shown># that if all
rotation angles are slightly increased in the same proportion, then the composite sequence remains
equal to a rotation through 180° about an axis in the xy plane, which is the really important
characteristic of a 180° pulse. In contrast the single rotation no longer has this behaviour. In this
case the deviation could be produced by an inhomogeneous r.f. field.

It is interesting to reflect that self-compensation of errors in rotation angles may only occur in the
regime of non-linear response (large flip angles). In a linear system, in which response is
proportional to excitation, two pulses can only be worse than one.

The possibility of self-compensation in the non-linear regime is illustrated more graphically
in Fig. 1, which shows a numerical simulation of the effects of the three rotations (90— 8y,

Z

FiGg. 1. Tracks traced out on a unit sphere by a family of vectors undergoing the rotations

(90-6)g¢(180-28)5(90-8)9. Where & varies between 9° and 18°, such as might be produced by the sequence

90,4,180,90,, in an inhomogeneous r.f. field. The vectors attain final positions much closer to the — z-axis than

they would have done after a single (180-26), rotation. Hence the sequence 904,180,905, provides an NMR
population inversion compensated for r.f. inhomogeneity.
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(180 —26)4(90 — 8)9,, on a family of vectors experiencing a range of r.f. fields.®? It is clear that when
d6=0, the central rotation does nothing and the vector passes cleanly from the z-axis to the — z-axis,
corresponding to NMR population inversion. The self-compensatory properties of the three
rotations are revealed by following the trajectories for small 8. The first rotation takes all vectors in
the zx plane from the z-axis towards the x-axis. The vectors land short of the x-axis, however,
because of the deviations 6. The next rotation is about the x-axis through the angle 180° —24. Were
this rotation exactly 180°, all vectors would be brought into mirror image positions with respect to
the xy plane, and then the final rotation (90 — 8)y, would take them all exactly to the — z-axis with all
non-idealities 6 compensated. Of course the central rotation is also actually non-ideal, but the effect
of the discrepancy is not too large if J is small, as is evident in Fig. 1. This is because at the end of
the first rotation the vectors are near the x-axis anyway, so the deviation in the 180° rotation can
only make its presence felt on the small component which is perpendicular to that axis. This is a
higher-order effect. The result is that the family of vectors tend to cluster at the — z-axis, and that the
pulse sequence 90,,180,90,, provides a population inversion rather insensitive to small deviations
in the rotation angles.

In Fig. 2 it is shown that the same sequence also provides some compensation if the non-idealities
produce instead a ‘tilt’ in the rotation axes towards the z-axis. This is the case if the pulses are
applied off-resonance. The simulated magnetization vectors correspond to resonance offsets in the
range 0.4 <Q/w{<0.6, where Q is the resonance offset and ! the r.f. field strength. Off-resonance
effects cause an increase in the rotation angles as well as a tilt of the rotation axis, which is also
taken into account in Fig. 2. The effect of the three tilted rotations is less easy to visualize than in
Fig. 1, but it is apparent that for this range of Q/w?, the vectors also ‘bunch’ at the —z-axis. Hence
the sequence 90,180,904, also provides a ‘broadband’ population inversion, i.e. a population
inversion less sensitive to resonance offsets than that produced by a single pulse. In fact the
population inversion is reasonably accurate for all offsets in the range — 1.0 <Q/w? <1.0.

More recently, much effort has been put into elucidation of the principles of such compensation
and for producing more general and more effective composite pulses, suitable for arbitrary
manipulations of the spin system in the presence of more general non-idealities and starting from

FiG. 2. Tracks traced out on a unit sphere by a family of vectors undergoing a sequence of rotations about tilted
axes, such as produced by the sequence 904,180,905, in the presence of off-resonance effects in the range 0.4 <
Q/w? <0.6. The population inversion is again much more ideal than it would be after a single 180, pulse.
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more general initial conditions. Much progress has been made, but not all problems have yet been
solved. The problem of designing a composite pulse which implements a constant net rotation of any
initial condition under arbitrary pulse imperfections has not yet been solved using an acceptably low
number of pulses. Were this not the case, the task of writing this review would have been much
simpler. As it is, compromise solutions must usually be found according to the degree of knowledge
of the initial condition of the spin system, the tolerance of the pulse sequence to particular types of
deviations of the rotations from ideality, and the predominant pulse imperfections which are known
to exist.

Emphasis will be given to the theoretical aspects of composite pulses, although some practical tips
will also be given. This is only in part due to the personal interest of the author. The fact is that
composite pulses have not yet been widely used for the application for which they were first
intended, error compensation of general pulse experiments in high-resolution NMR. So far the
widest use has been in techniques which, though of importance, are essentially ‘spin-offs’ like
broadband heteronuclear decoupling. One can identify many reasons for this. In the first place,
commercially available spectrometers have been, and to some extent still are, poorly equipped to
handle composite pulses. Accurate r.f. phases are vital for the proper operation of composite pulses,
yet in the past most instruments used a method of generating phases by routeing signals through -
separate pathways having different propagation times, invariably leading to problems of phase
inaccuracies and amplitude imbalance. Another important factor blocking the use of composite
pulses has been unsatisfactory pulse programming facitilities, making it inconvenient or impossible
to implement complicated multiple-pulse sequences. Both of these technological problems are at last
showing signs of being recognized and dealt with by the manufacturers. Digital phase shifters have
been introduced,®”-*® in which the carrier follows a unique signal path, allowing phase errors or
amplitude imbalances to be eliminated, and somewhat more versatile pulse programming hardware
and software is more usually available.

However, technological difficulties are not the only reasons why so far composite pulses have not
been much used. There are conceptual difficulties. Compensation schemes have often not been based
upon unified principles, requiring careful analysis in order to compensate a given pulse sequence. It
is not usually possible to ‘throw’ composite pulses into a pulse sequence and expect them to work.
Only recently has it become possible to design procedures with a high degree of generality, as will be
shown below. Thus one of the main motivations for this article is to gather together the various
theoretical approaches for design of composite pulses and to show the relationship between them.
Sometimes the desire to concentrate on the main principles and to present a unified picture has
caused the omission of some interesting and perhaps useful composite pulses which in retrospect
seem to have a mainly ‘historical’ significance. I have also readily changed the phases or reversed the
order of some of the composite pulses which have already been published when this allows them to
be fitted more readily into some conceptual framework. Experimental results are shown only for
cases where the outcome may be in doubt; I have not shown experimental verifications of the more
trivial transformation properties of composite pulses, which can be found in the original literature.
For convenience, I have taken the illustrations from my own work, many of the results shown here
having being produced specifically for this article.

The organization of the subject matter is as follows: In Section 2 the basic theory of single r.f.
pulses is given briefly, mainly for the sake of establishing notation and concepts for the following
Sections. In Section 3 the major theoretical approaches for the design of self-compensating pulse
sequences in the high-resolution NMR of isotropic liquids are presented. The discussion may be
found rather mathematical for many readers, who may like to skip this Section. In Section 4 the
various composite pulse sequences are reviewed, not this time in terms of their principles of
construction but more in view of their properties and limitations. A classification of composite
pulses on the basis of the type of rotations they produce will be suggested. The classifications A, Bl,
B2 and B3 for different sorts of composite pulse will be introduced and used to explain under which
conditions composite pulses may be inserted into a given pulse sequence. In this Section, different
sequences are also compared by means of numerical simulation. In Section 5 some practical
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applications of error compensation in high-resolution NMR are discussed. In Section 6 a few
practical hints as to how composite pulses can be implemented are briefly given. In Section 7 some
recent ‘unorthodox’ applications of composite pulses are touched upon, including the use of
rotations about the z-axis, the possibility of achieving spatial selectivity by exploiting r.f. field
variations, and the compensation of sequences for variations in coupling constants. In Section 8 the
special problems of composite pulses in anisotropic systems are presented. Some closing remarks are
given in Section 9.

2. THEORY OF SINGLE PULSES

2.1. Pulse Propagators; Conventions

In most of this article we discuss the case of NMR in isotropic liquids, where spin—spin couplings
are weak and it is easy to dominate them by applying an r.f. field. The subject of composite pulses in
solids or anisotropic liquids, where spin-spin couplings are often the principal source of pulse
imperfections, is dealt with separately in Section 8.

Considering for simplicity a homonuclear system of spins /,, the rotating-frame Hamiltonian in
the absence of r.f. irradiation may be written

Ho=Y,Qu\ +Y 3200 (171, (1)
and in the presence of an r.f. field of phase ¢, and frequency w by
H,=H,+Hy,
Hge= w1zklk‘"¢,, )
where
Li=I,e +1e,+1,¢
and n, = €,C05¢), +e,sing,, 3)

Here ), is the resonance offset of spin I, defined €, = ¢, —w, Where wy, is the Larmor frequency of
spin I, J, are spin-spin couplings, w, is the nutation frequency around the rotating-frame r.f. field,
and e,.e, and e, are unit vectors along the rotating-frame x,y, or z-axes.

The density operator ¢ of the spin system evolves during the pulse according to the Liouville-von
Neumann equation, neglecting relaxation

6= —i[H,o] )

If the pulse is exactly rectangular, meaning the r.f. field rises from zero to its full value
instantaneously at the beginning of the pulse and decays to zero instantaneously at the end, and its
phase is constant throughout, then H, is time-independent, and eqn. (4) can be integrated over the
duration t, of the pulse:

o(t+1,)=U,o(r) U}, 5)
where
U,=exp(~iHt,)
and Uj=exp(+iH,t,). )

The operator U, is called the pulse propagator, and describes the effect of the pulse on arbitrary
initial conditions o(t) through eqn. (5). If a sequence of pulses is applied, for example three pulses of
durations t,, 7,, 73, and possibly different phases or r.f. amplitudes, the overall evolution of the
density operator may be evaluated stepwise

o(t+7+ 13+ 73)= U;230(2) Ufzs ™
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where
Ui2a=U3U,U,. @®

The properties of a pulse or sequence of pulses may be discussed either in terms of the
transformations it produces of particular initial conditions [eqn. (5)], or in terms of its propagator
U [eqn. (6)] which contains the information as to how the pulse transforms all possible initial
conditions. In this review, but in contrast with many previous papers, the propagator is considered
to act from the left, in order to bring the treatment into line with literature in other fields. It should
be remembered therefore that chronological order runs in pulse sequences from left to right, but in
their propagators from right to left.

It is convenient to mention at this place some other conventions. Firstly, we assume throughout
that all frequencies such as ,.w,, etc. are positive, unless stated otherwise. With this convention,
successive ideal 90, rotations take a vector through the positions z— —y— —z—y etc. Secondly,
concerning the sign of offset terms €, we hold to the convention that positive offsets Q, are
associated with resonances on the right-hand side of the carrier in a conventionally presented
spectrum with quadrature detection. This is in fact true for nuclei of positive gyromagnetic ratio.
(Nevertheless the behaviour of a pulse sequence at a particular offset will only conform to that
predicted if the sense of rotation of the r.f. phases is correctly assigned. A way of checking this latter
point is to take a spectrum using a single 90, pulse and phase-correct it to pure positive absorption.
Then take a spectrum with a 90y, pulse and apply the same phase correction. The lines should
appear in pure dispersion with the negative tail on the right. If the negative tail is on the left, this
indicates an incorrect sense of rotation of the phase.)

Further nomenclature concerns the notation for pulse sequences. It is probably impossible to
produce a notation which is usable in all contexts. We denote pulses here by (ﬁg)d,p, where 9
indicates the pulse duration 7, in units of the inverse of the prevailing (‘nominal’) r.f. field strength
®? in the sample,

ﬂpo’:wlotp’ (9)

and ¢, is the r.f. phase. By is often referred to as the ‘nominal flip angle’, a useful but occasionally
misleading term, since it really refers to a pulse duration rather than an angle. Both 3 and ¢, will
usually be given in degrees in this article. When radians are used, they will be given in units of n. The
subscripts x,y, —x,etc. are only useful for the four orthogonal phases and will be avoided. If the
context demands that a pulse is specifically ideal, this will be indicated by a further superscript °,
thus 903 represents an ideal 90° pulse of phase ¢,=0.

Subscripts are used for different purposes. Normally it is clear from the context what a subscript
means. We will usually keep to the convention that subscripts k.k'. . . index the spins I, I;. . . and
numerical subscripts or p,g,lmn. . . index the individual pulse elements in a composite pulse. If both
are used, the pulse index comes first. A missing spin index usually indicates a sum over all spins, for
example I, =Y, [,,. Further notation is that n is a unit vector, and n, is a unit vector in the xy plane
at an angle ¢ from the x-axis.

2.2. Ideal Pulses

The ideal pulse is

(a) perfectly rectangular, as mentioned above

(b) employs a perfectly homogeneous r.f. field (w; = wY), which

(c) is intense enough that the interaction of the spins with the r.f. field dominates spin-spin
couplings and rotating-frame residual longitudinal fields arising from resonance offset effects.

If these conditions are satisfied, terms other than H,; may be ignored during the pulse, and the
ideal propagator for a pulse of phase ¢, and duration T, is given by

Up=TILexp{—ifgl,ny,}. (10
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The nominal flip angle given by eqn. (9) may be adjusted by changing either the r.f. field strength
or the pulse duration 1, The propagator given by eqn. (10) may be interpreted as a ‘cascade™*® of
identical, commuting rotations of all spins in the system about the axis n,, given by eqn. (3).

The transformations induced by such rotations and their application in high-resolution NMR
experiments are familiar. Typical transformations induced by ideal 90° pulses include:

(a) conversion of longitudinal into transverse magnetization, e.g.

903
L, ——— -1 (11)

(b) coherence transfer processes, as expressed in terms of Cartesian product operators'®® by such

transformations as

9 (4
p] 4 %

_'2Iky1k’z
0

90
2o lyx S ~ 2yl (12)

or in terms of single element product operators‘®!-¢? by transformations like
1i1e 9%, I+ 1. +il b1 =il i1 5.
NS Y R i) (R ) AR )
ST 0 PR ) FIRD 04 BAE) I ¥
S SN N L P (13)

Typical transformations induced by 180° pulses include
(a) inversion of longitudinal magnetization

0
h, —8% (14)
(b) Phase reversal of transverse magnetization
0
Ln, — 2%, pn_, (15)
(c) interchange of spin states |m,» with | —m, ), e.g. for a system of two spins-1/2, in terms of single
element product operators,(¢!+62
0
1irs — 8%, goyp (16)

Pulses with flip angle of other than 90° or 180° are also often employed. For example, pulses of
small flip angle B°<1 radian are frequently used to transfer phase information from a given
coherence |r){s| specifically to connected coherences |r){s| and |s')<r|, where |r), |s), [r'> and |s) are
eigenstates of the whole spin system.>'® Also 45° pulses are useful in converting longitudinal 2-spin
order to observable single-quantum terms(®3-64

450 !
21kzIk’z —_—l 7(21kzlk'z _ZIkyIk’z - 21k21k’y + 2Iky1k’y)
17)

2.3. Non-Ideal Pulses

In practice, instrumental limitations often prevent the conditions mentioned in Section 2.2 from
being met, causing the pulse propagator to deviate from its ideal value, eqn. (10).
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(i) Rf. inhomogeneity. The type of imperfection which is easiest to analyze arises because the r.f.
field inevitably varies from place to place throughout the sample volume. The spatial variation of r.f.
fields produced by various coils has been examined theoretically'®® and may be determined
experimentally using a version of two-dimensional spectroscopy.(®°® If the true r.f. field at a given
place is w, rather than the nominal value w?, but is still large enough that H,; dominates H, in eqn.
(2), then all spins still experience rotations about the same axis n., but through a spatially dependent
angle f,= Bow,/w{, rather than through the nominal flip angle g9 R.f. inhomogeneity effects are
often small in normal high-resolution NMR systems, but are of increasing importance in large-
sample studies and NMR imaging.

The deviation of r.f. field @, from the nominal value w? is usually quantified by the parameter
dw,/0?, where 3w, = w; —w}.

(i) Phase errors. It is also possible that the true phase ¢, of the r.f. pulse differs from the
intended phase because of instrumental defects. However, recent technical improvements such as the
introduction of digital phase shifters®7-3® have eradicated this as a long-term problem so phase
errors will not be further considered in this work. Accordingly one should be aware that unless very
accurate r.f. phases are known to be available, the recommendations of this article could be
inappropriate. In fact many composite pulses may be viewed as converting accurate r.f. phases (i.e.
accurate rotations around the z-axis) into accurate rotations around other axes such as x or y.

(iii) Pulse shape errors. All of the above equations assumed a perfectly rectangular pulse where
the r.f. field rises instantaneously from zero at the beginning of the pulse and decays instantaneously
at the end, and keeps constant phase throughout. In practice, transients are inevitably encountered
at the beginning and end of each pulse which originate from the finite frequency bandwidth of
transmitter and probe. They are manifested as a rounding of the pulse shape and phase disturbances
during the rising and falling edges.®®” For normal circuits the transients have duration about { sec,
and can often be ignored if a 90° pulse has duration around 10usec or more. The effects are
troublesome in solid-state NMR where shorter pulses must often be created. In liquids, where the
spread of resonance frequencies is usually smaller, longer pulses can be tolerated where the effect of
transients is small. For most of the rest of this paper phase and amplitude transients are therefore
ignored. It is therefore advisable never to use more pulse power than is necessary to perform the
experiment. This recommendation is valid whether or not composite pulses are used.

(iv) Off-resonance effects. 1f H,; does not greatly exceed H,, the simultaneous influence of these
two non-commuting terms must be taken into account. If internal spin-spin couplings may be
ignored during the pulse (which is usually the case), the propagator still factors into a cascade of
commuting rotations on all spins I, in the system, but the rotations on each spin are no longer
identical and occur about tilted axes n,, , not in the equatorial plane of the rotating frame, n, ;-e, #0.
Also the rotation angles B, are larger than the nominal flip angle §°.

Taking into account both off-resonance and r.f. inhomogeneity effects, the propagator for a pulse
of phase ¢, and nominal flip angle 7 is given by

Up=nkeXP{_i.Bp.klk'np.k} (18)
with
Bpi=(01/0D)BRl1 + (Q/e,)*]*?
n, .= e,cost, +e,sinf,cosg,+ e sinf,sing,
and

tanf, = w, /Q,. (19)

The rotation on each spin I, is determined by the rotation angle §,, and the polar angles 6, and
¢, of the rotation axis. Here 6, is defined as the declination of the rotation axis from the z-axis, so
that 6, =90° for an ideal pulse. This definition is also at variance with many previous publications.
but follows the usual definition of polar angles in mathematics.

In solids and liquid crystals, the major source of off-resonance effects for spin 1/2 nuclei arises
from dipolar interactions rather than chemical shift terms. Treatment of these systems will be
deferred until Section 8.
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The implications of the imperfect propagator eqn. (18) may easily be worked out for specific
experimental cases using Cartesian product operators.®? It is often convenient to work with the
alternative form of the imperfect propagator given by

U,=TLexp{ —i@, Iy, Yexp{—iOd,, yexp{~iB, [\, Jexp {i6,,, Yexp{ig, I, }.
: (20)

the following transformations have been derived for initial conditions 6(0)=1,....1,, (omitting the
pulse index p for brevity):(6%

I b, I,[ cosBsin?0, +cos?0,]
+1I,[sinf,singsinf, +sin*(B,/2)cospsin26, ]
+1,,[ —sinpcosgsind, +sin?(B,/2 Jsinpsin26,]

I —Po . 1 [sin¥(By2)cospsin26, —sinf,singsing,]
+ I [cosBi(sin’e + cos?¢pcos?0,) + cos? psin26,]
+ 1, [sin*(B,/2)sin2 ¢sin? ¢, — sin fcos6, ]

I, By e[ SIn%(B,/2)sinsin26, + sin f,cos¢sind,]
+1,.[sin*(B,/2)sin2¢sin?6, —sinf,cosb, |
+ I, [cosBi(cos?d + sin?pcos?0,) + sin?psin 20, ]. .
(21)

Transformations of multiple-spin terms such as 21,1, etc. or individual coherence terms such as
1.1}, etc., are easily calculated by taking suitable combinations of the above expressions.

Some of these transformations are of particular importance. For example, it is well-known that a
90° pulse is rather insensitive to off-resonance effects if judged by its ability to transform z-
magnetization into the xy plane.’®® Assuming no r.f. inhomogeneity, w, = w?, the transformation of
I, is given by

Lo — 2% s Lont, +(cospt +1sing X1 —(n],))'? (22)

where the residual longitudinal magnetization n 7y, is

Hie 2(1 = /4 Q/]) (23)

evaluated to second order in offset Q./w?. The phase of the transverse magnetization is given to
third order in offset by

oF~—m/2+Q /0! (24)

Thus the phase error generated by a single pulse is linearly dependent on offset to a very good
approximation, and the residual longitudinal magnetization has only a weak quadratic dependence.

The sensitivity of the population inversion induced by a 180° pulse to off-resonance effects is
stronger:

1, —380 , of (C142Q0)+. .. 25)

Indeed if the pulse is applied off-resonance, a nominal flip angle 89 cannot be found for which
population inversion is ideal.

The performance of 90° and 180° pulses with respect to simultaneous r.f. inhomogeneity and off-
resonance effects will be analyzed in more detail in Section 4.
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3. THEORY OF COMPOSITE PULSES

3.1. Geometrical Approach

Historically the first approach used in designing composite pulses outside the linear regime was
by following the trajectory of magnetization vectors starting from some given initial condition,
usually ¢(0)=1,, and observing visually or by geometric construction how the trajectories may be
combined in such a way as to cause error compensation.

The composite pulse 904,180,904, Which provides a compensated population inversion, was the
first to be constructed in this way'®>? and its geometrical interpretation has already been discussed in
the introduction. It is fair to say that by virtue of its brevity and simplicity this prototype composite
pulse remains one of the most useful. We will meet it again in various guises.

Further applications of the geometric approach, usually with the assistance of computer
simulation, produced a stream of composite pulses with different properties over the next few years.
We will discuss some of these suggestions later on according to their application. However it is
convenient to mention here two examples of composite pulses compensated for r.f. inhomogeneity,
because they reveal principles which are interesting in a more general sense.

(i) The composite pulse 904,90, was shown to destroy longitudinal magnetization more efficiently
than a single 90° pulse in the case of an inhomogeneous r.f. field and negligible resonance offset.’¥
The reason is very simple and is shown in the computer simulation of Fig. 3. The first 90° pulse
leaves small longitudinal components of magnetization if the r.f. field is homogeneous. These small
residual components are rotated nearly into the xy plane by the second 90° pulse, whilst the desired
x-magnetization commutes with the second rotation and is unaffected. In the absence of off-
resonance effects, the residual z-magnetization is easily evaluated to second-order in dw; /w?:

U " =(rdw, 207). (26)

The quadratic dependence is often referred to as first order compensation.
(ii) The composite pulse 90,4,180;,, was shown to destroy longitudinal magnetization in an
inhomogeneous, on-resonance r.f. field more effectively still than the previous pulse.*® This

.........
.......
o« *

FiG. 3. Tracks traced out by a family of vectors experiencing on-resonance r.f. fields in the range 0.8 <w,/w? <
1.0 during the sequence 90,,90,. The destruction of z-magnetization is compensated for r.f. inhomogeneity.
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sequence was constructed by a geometrical argument in which the form of the ideal trajectories at
the end of the first pulse and the beginning of the second was examined. Compensation of r.f.
inhomogeneity occurs if the ideal trajectories are ‘anti-tangential’, meaning that at the junction of
the two pulses, the magnetization vector exactly reverses its sense of rotation, and if also the arc
lengths of the two trajectories are equal. These conditions may be given a more mathematical
flavour by the requirement:3®

[BIInY, o(z,)°] — [ A2I'n3, o(7,)°] =0 @7
where o(7,)? is the ideal density operator at the junction of the two pulses:
’ a(z,)°= U%(0) U (28)

For the pulse given above, 6(0)=1,, f{=n/2, n{=n,, f3=m, n=ns, 3, and the condition eqn.(27)
may be shown to be fulfilled, as is demonstrated pictorially in the computer simulation of Fig4. The
residual z-magnetization has a cubic dependence on r.f. inhomogeneity dw, /w?, so the sequence is
said to enjoy second-order compensation with respect to destruction of longitudinal magnetization.

Further development of these geometrical arguments led to a wide range of composite pulses with
more highly compensated transformations of the initial condition. As examples of the more baroque
developments we show in Fig.5. computer simulations of magnetization vector trajectories for (a) so-
called ‘spin-knotting’ sequences>?

(ﬂ?)l 80_‘[1“(53)0‘172“{13(3))1 80 (29)

where B7=10°, B9=60°, p3=140°, and 7, represent small intervals of duration t,=0.87/w?,
1,=0.227/w{; the sequence (29) provides a transformation I,,—1,, rather insensitive to offset effects,
and (b) the sequence®®

4590901 809027045180180270451 80909 0901 8045270 (30)

which provides a population inversion I;,— —1I,, highly compensated for r.f. inhomogeneity.

F1G. 4. Tracks traced out by a family of vectors experiencing on-resonance r.f. fields in the range 0.8 < w,/0? <
1.0 during the sequence 90, 4,180, ,,. The rotation axis during the second pulse is indicated.
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Q - b

Fig. 5. Exotic suggestions for composite pulses. (a) ‘Spin-knotting’ sequence [eqn.(29)]; the plot shows the

evolution in time of the locus formed by joining together the tips of a family of vectors experiencing off-

resonance effects in the range —0.5 <Q/w{ <0.5, taken at equal time increments through the second pulse in the

sequence. Such plots are sometimes of assistance in gaining a physical insight into error compensation (from

Ref.33). (b) Tracks of magnetization vectors experiencing on-resonance r.f. fields in the range 0.8 <w,/w{<1.0

during the 9-element composite 180° pulse given in eqn.(30). Highly compensated sequences such as this may be
created with a combination of geometrical arguments and symmetry properties (from Ref.36).

3.2. Propagator Compensation; Magnus Expansion

The geometrical approach has the advantage of providing a strong physical picture of how
error compensation works. Its disadvantages are that it is limited by the number of consecutive
rotations which can be visualized, and that it is only easily possible to compensate the effect of a
pulse sequence on a particular initial condition, usually a magnetization vector along the z-axis. The
transformations of other initial conditions cannot easily be compensated at the same time and may
not even suffer the desirable transformation under ideal conditions. For example, consider the
sequence 905,90, which was shown above to provide a transformation of z-magnetization I, into
the xy plane insensitive to r.f. inhomogeneity effects. In the absence of non-idealities it transforms I,
to I, and so might be thought to be equivalent to a 90y, pulse. That this is not the case is
demonstrated by applying the sequence to another initial condition such as 6(0)=1,. A 90y, pulse
would leave I, unchanged but 904,90, transforms I, to I,. Thus the sequence 904,90, may not be
used to replace 90, unless the initial condition is known to be I,, or if special precautions are taken
which are described later.

A way to ensure that not only the transformation of one particular initial condition is
compensated, but also all the transformations of all possible initial conditions, is to concentrate on
the compensation of the pulse sequence propagator U, If it can be ensured that U,~U] over a
range of imperfections, where U is the ideal propagator, then the pulse sequence may be used to
replace the single pulse in all contexts.

As it is difficult to follow pictorially the transformations of all initial conditions at once, a more
mathematical approach is indicated in this case. A suitable framework is provided by coherent
averaging theory (also known as average Hamiltonian theory), which has been heavily used for high-
resolution NMR in solids.®1?

We have already seen that for a time-independent Hamiltonian, the equation of motion (4) may be
integrated over a time ¢ to find the pulse sequence propagator U(t), eqn.(6). During a pulse sequence,
the Hamiltonian is only piecewise time-independent, so the propagator may be written as a product
of terms for each pulse in the sequence, eqn.(8). This product of many non-commuting terms is not
very meaningful unless the algebra of the operators can be used to reduce the product into a single,



74 M. H. LEvitt

informative term. A way to do this in the special case of many consecutive rotations is in fact shown
in the following Section. In this Section, a different direction is taken, which is to view the
composite pulse as a special case of some time-dependent Hamiltonian H(t) and to use an
approximate expression for the integrated evolution operator. An appropriate expression is
provided by the Magnus expansion. The integrated propagator for evolution over a time ¢ under the
time-dependent Hamiltonian H(z) may be expressed

U(ty=exp{—iH(t)t}, (31)
where the effective Hamiltonian H(t) is given as a power series in :
H(ty=HO@)+ HV(t) + . .. (32)
and
HO()=¢1{, drH(r)
HO()= Qi)™ ' [4de [ de'[H(r')H(t™] 33)

Higher order expressions for H'?(t) etc., are given in Ref.(9,10); In general, H!™(¢) is proportional to
"

This expansion is useful only if the series converges, so that higher order terms may be neglected.
Conditions for convergence have been discussed in several places.:1%:3%¢® The condition most
usually quoted, which, however, is not completely strict,(*® is that ||[H(¢')t|| €1, which demands
loosely that the duration over which the averaging is performed should be small enough that the
Hamiltonian term H produces only a small change in the state of the system (weak perturbation
case). Now it is clear from this that the Magnus expansion is not directly applicable to most pulse
sequences, since the density operator changes very much throughout the sequence. However, this
impasse may be avoided by a trick. Suppose the Hamiltonian can be divided into a ‘big’ part and a
‘small’ part:

H(t)= Hyg(t) + Hyman(?) (34)

where usually the big part is ‘simple and uninteresting’ and the small part is ‘complicated and
interesting’. It is possible to pass into an interaction frame in which one ‘moves with’ the evolution
due to the big part alone, so that this motion no longer affects the convergence of the expansion:

G(t)= Upig(t)! (1) Uniglt) (35)
A ynati(8) = Uspig(t)' H yman Unig(2) (36)

and
& (0)= ~i[Hyman(®), 6(t) ] (37)

In the interaction frame, most of the Hamiltonian is removed leaving only a small part Hqp,,(2)
given in eqn.(36). If H,py,y, is small enough, the Magnus expansion now converges. Taking only the
zeroth-order term in the expansion, the evolution of the density operator in the normal frame may
be evaluated:

a(t)= Ul O)U ()’ (38)
where
U(t)= Uyiglt) Uumani(?) (39)
Upman(t)=exp{~iHS t}
and

H@y t= 6 dt' Hypan(t) (40)
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The main difficulty in using the Magnus expansion is to find the proper choice of the interaction
frame which will ensure convergence. In high-resolution NMR in solids,®"!? it is usual to choose for
Hyg the pulse sequence perturbations and for H,m,y, the internuclear dipolar interactions and
resonance offset terms; in heteronuclear decoupling in liquids,!! ~!% the r.f. terms and chemical
shifts have been taken together into Hy,, leaving the heteronuclear coupling in H,pay; in the
presence of large resonance offsets it is even possible to have the r.f. pulse sequence in H,p,y and the
offset in Hy;.*® We discuss here the choice made by Tycko et al.,***°*8) of having for Hy;, the
Hamiltonian for an ideal pulse, and allowing H g, to include the residual Hamiltonian terms which
may be held responsible for imperfect functioning of the pulse.

With this choice eqn. (39) has the following interpretation: Uy(t) represents the propagator of an
ideal pulse sequence. In the presence of non-idealities, this rotation should be preceded by a small
rotation U,p,.(t) of the initial condition. This rotation may be calculated through the average
Hamiltonian H{O., which represents the time-average of the pulse imperfections throughout the
sequence, in the interaction frame. It is important to note the definition of the interaction frame,
eqn. (35)as the frame which ‘goes with’ the motion induced by the ideal pulses. One may visualize
this by ‘sitting on’ a magnetization vector and observing the rest of the world from this rotating
reference point: If the rotations do not commute, this looks quite different to watching, from a static
reference frame, the motion of a magnetization vector undergoing the same sequence of rotations.
For example, the positions occupied by a vector starting at the z-axis under a sequence of rotations
90,904, is z— —y— —y, but the positions occupied by the z-axis as viewed from the interaction
frame are z—y— —x.

The operation of coherent averaging theory is easiest to visualize in calculating the performance
of pulse sequences as a function of resonance offset, since in this case Hypgy(¢) is time-independent:

Hsmall(t) = Zka Ikz (41 )

Its motion in the interaction frame may easily be calculated. For example, consider a single
180, pulse:

H yman(t') = Y QI 1,c08(0f1) + I sin(?t)) 42)
Therefore

H, ()= Zk(Qk/ o)) ky 43)

using wdt=mn.

The density operator after a 180° pulse applied to initial z-magnetization is therefore given
approximately by eqn. (39):

Sl —2mald S g cos@/0f)+ sin(@/wd)}
1805 o { ~ Lecos(Qy/0) + I, sin(@, /o) ) )

which is in agreement with eqn.(21), to first order in offset (Q/w?). Of course this result is not too
interesting for a single pulse but the arguments are readily extended to pulse sequences which are far
too complicated for exact calculation. One only has to derive the motion of the interaction frame,
which is not completely apparent in complicated cases, but is certainly calculable.

Coherent averaging theory may be used for designing composite pulses by setting H\S)y, and
hopefully also H{L),, close to zero, for the pulse imperfections embodied in the perturbation Hpy(1).
The technique is to develop a set of simultaneous equations, with the pulse lengths and phases as
variables, which define the conditions under which the various orthogonal components of H{2,
vanish. The equations are normally too difficult to be solved analytically, and numerical searches for
an approximate solution must be conducted.
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Tycko et al.“**® have devised a whole series of composite pulses on this basis. Sequences which
have H® and HV close to zero for off-resonance effects are the composite 90° pulse

3850320, 5025, @5)
and the composite 180° pulse
336,,246,,10,,,74,5,10,,+246,,,336,, 46)
For r.f. inhomogeneity, H® and H" are made small by using the composite 90° pulse
270, 503603,9180,,3180;54[70,] 47)
and the composite 180° pulse
180551800180, 53605, 4 (48)

where the phases have been adjusted so that the sequences produce overall rotations about the x-
axis, and a ‘supplementary. z-rotation’ has been introduced in sequence (47), indicating that the
phases of all following pulses must be adjusted by —70° if the composite pulse is to behave
equivalently to 90, (see Section 4).

It is not immediately obvious how these sequences work ‘physically’ compared to the composite
pulses described earlier. But they have the advantage that they may be applied without regard to the
initial condition of the density operator and without thinking about the context of the pulse in the
pulse sequence. This is a very important advantage, since it greatly simplifies the task of
compensating a pulse sequence. However the pulses so far suggested do have some drawbacks which
arise from their method of construction. Firstly, those compensated for r.f. inhomogeneity tend to
have unusual phases—not an insuperable difficulty, but an inconvenience. Secondly, those
compensated for off-resonance effects tend to have a rather modest range of compensation, although
within that range they are very accurate (Section 4); the slow convergence of the Magnus expansion
makes it difficult to extend the range of compensation of errors without greatly increasing the length
of the sequence. Thirdly, the sequences tend to be rather sensitive to simultaneous r.f. inhomogeneity
and resonance offset effects. Fourthly, a separate numerical optimization of pulse lengths and phases
must be performed if it is required to create pulses having rotation angles different from 90° or 180°.

These drawbacks of the Magnus expansion pulses make it worthwhile considering if full
compensation of the propagator is in fact necessary in the majority of experiments, and if a power-
series expansion around a point of ideal behaviour is the most appropriate means of designing a
pulse sequence for which brevity and bandwidth play at least as important a role as accuracy. The
rest of this Section concerns composite pulses designed by a different approach, which although
not enjoying full propagator compensation, have propagators compensated well enough for most
requirements, whilst being rather short and easy to apply. The relative merits of the various sorts of
composite pulse, and the situations in which it is possible to tolerate less than full compensation of
the propagator, will be discussed further in Sections 4 and 5.

3.3. Theory of Non-Commuting Rotations; Similarity Transformations

Given one rotation through an angle 8, about an axis n,, followed by a second rotation through
an angle 8, about an axis n,, through which angle and about which axis is the overall rotation? This
question was asked and answered by Hamilton in the last century using his mathematical method of
quaternions,”? and interest in the solution has been revived recently in the context of composite
pulses by Bliimich and Spiess.**®’ The answer to the question is by an angle §,, about an axis n,,
given by

C12=C1C3— 5150 °N;

SpaMy ;== 81CHMy +C 8Ny — 81 S0 XN, 49)
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where s, =sinf, /2, c; =cosp, /2.etc.*® A proof of this property using terminology familiar to the
NMR community is given in Ref. (40). A solution may also be written down for three non-
commuting rotations:

€123 =C1C2C3 —(5152C30; "Ny + 5,C,83M, N3 + €y 53530 ,°03)
+5.5,53(0; X Ny)ny
51230123 =581C2C3My +C15,C3M; +C1C,53M;3
— (515,030 XMy +51C383My X N3 +C;5353M; X Iy)
—515,83(,(n3°n3) — (n3°ny )N, + (0 n,)ny)
(50)

The above equations provide an exact alternative to the approximate coherent averaging theory in
calculating the effect of a pulse sequence, although they often get too cumbersome to be used for
more than two or three rotations. Nevertheless, a number of interesting properties of composite
pulses can be derived analytically.**®

We now consider some special cases of eqns.(49) and (50).’

(a) Two small non-commuting rotations are applied (8,8, <1). A series expansion of the overall
rotation may be made:

Biolny, =(BIn, + Bo01-n,) =48, Ln;, BIn, ]+ ... (5D

which is a special case of the Baker-Campbell-Hausdorff formula.'® In the above, the property
[In,, I'n;]=il<(n, xn,) was used.

(b) Three rotations are combined, the first and last are exactly opposite (Byn,= — fsn,)
(rotation sandwich): '
Bi23=8,
I'ng 3 =exp{—ifsI'ny HI-n,exp{if;l-ny } (52)

These two properties take particular importance in the theory of composite pulses. The first because
it shows how small rotations can be combined, and destructively interfere if fin, >~ — f,n,. The
second because it forms a way of manipulating the rotation axis of a given rotation whilst
preserving the rotation angle, i.e. a similarity transformation. The property (b) above may also be
proved using a formula often useful in the theory of NMR:

exp(lU AU HY=U exp(d) U™! (53)

which is easily demonstrated by series expansion of the exponential.
Let us now concentrate on the practical implications of this latter property. Three practical cases
of similarity transformations are significant.

(a) The actual ‘sandwiching’ of a given pulse by two pulses of opposite flip angle, in order to
change its rotation axis. For example, if an ideal pulse (8°)3 is sandwiched by two ideal pulses 909,
and 909,,, the combination is by eqn. (52) equivalent to an ideal rotation through ° about the z-
axis, (8°)? (composite z-pulse>*).

(b) An overall phase shift of a pulse or set of pulses is also a similarity transformation, since the
rotation angle is left constant whilst the rotation axis is changed. The propagator may be thought to
be sandwiched by two opposite z-rotations:

U,=exp{ —i¢I=}U¢=0eXp {igl.}. (54)
Compare also eqn. (20).

(c) The cyclic permutation of a pulse sequence element from one end of the composite pulse to the
other also represents a similarity transformation. Suppose a sequence S exists with propagator U(S)
and which contains an initial sequence of pulses X which has a propagator U(X). If X is removed

JPNMRS 18/2-B
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from the beginning of S and reintroduced at the end (with no change in its order in time), the
propagator for the permuted sequence (which can be denoted X ~!SX), is given by

UX~18X) = UX) US) UX). (55)

(Note the different chronological order in the sequence and the propagator.) Therefore if S
produced a rotation by s about an axis ng, then the sequence X ~!SX produces a rotation through
the same angle B, but about a new axis n’ modified by the action of X on ng

I'n'= U(X) I'ng UX)" (56)

We refer to rotations through the same angle but about different axes as similar rotations.

3.4. Recursive Expansions

The power of the above properties is that they show how to manipulate pulse sequences so as to
produce well-defined effects on their overall propagators, to a large extent independent of their
internal structure. This suggests methods of recursive expansion, in which any given pulse sequence
is combined with its analogues derived by similarity transformation, to produce a longer sequence
with more desirable properties than the original. The method is recursive because this new sequence
may be in turn inserted into the machinery again to produce an even longer and even better
sequence, and so on. Recursive properties can also be derived in the framework of coherent
averaging theory,!* but discussion tends to be much simpler in terms of similarity transformations
of rotations. This point of view is supported by the contrast between Waugh’s elegant and simple
theory of heteronuclear decoupling'’®'” and the intricate coherent averaging theories which
preceded it.(1!~14

3.4.1. Broadband cycles. Broadband cycles are composite pulses possessing vanishingly small
overall rotation angles over a wide range of imperfections, especially resonance offset. At first sight
it is not entirely clear to what use cyclic pulse sequences might be put, since they return irradiated
spins to their initial state. In fact they are of great importance in themselves as heteronuclear
decoupling sequences,!!~2% and also play a central role in the construction of more general
composite pulses.

Two different recursive procedures are known for generating broadband cycles, involving cyclic
permutation of either 180° pulses"® or 90° pulses®”. Only the latter procedure will be discussed
here, since it is generally recognized to converge more rapidly in the region of fairly small offsets and
to yield more efficient cycles than the former.

The Waugh expansion’” takes an initial approximation to a broadband cycle C§”, which
provides a small rotation through an angle 8™, and produces a new cycle C"* Y which is twice as
long as C{” but has a much smaller overall rotation angle g™V ~ng™, where 5 is a convergence
parameter, 7 << 1. A constraint is set upon the starting cycle Ci™; for rapid convergence, C§” should
be of the form CP*~1 {5 Y, i.e. it should itself consist of two cycles of opposite phase. This ensures
that the rotation produced by C¥™ is about an axis n{™ close to the z-axis, nJ"-e, 1.

The procedure runs as follows.

(a) Permute an element P, from the cycle C¢™, to form the cycle P! Cy® P,
(b) Shift the phase of the permuted cycle through 180° to give a cycle Pgy C%o Piso-
(c) Juxtapose the two similar rotations to yield

C(0m+l)=Pl_810 C(l"é)o Pigo Pé—l C(om) P, (57)

The cycle C§"*V can then be used as input to step (a) again. It may be shown that convergence is
usually better if on alternate steps of the expansion, the sense of cyclic permutations is reversed, i.e. if
the first step follows the order in (a)-{(c) above, then the next stage should employ back-to-front
permutation, and the similar cycles should be juxtaposed in opposite order:

C+D=Py C"*D P51 P oo CMD P, (58)
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The element P, which is permuted is at best a broadband 90° pulse, i.e. it should transform I, into
the xy plane to a good approximation independent of offset. This condition is already fulfilled quite
well for a single 90° pulse, Py=90,, eqn.(23). Assuming the cycle Cf™ produces a rotation through an
angle f™ about an axis n{"=e,, and that o, =?, then P5! C®™ P, rotates through ™ about an
axis close to the xy plane, defined in eqn.(22). The phase-inverted version P, CiJ, P, g then rotates
through the same small angle about an axis which is almost antiparallel, and by using eqn.(51), it is
easy to show that C0"*? produces a rotation through a smaller angle *!) about an axis n{"*"
defined by

BN Ing Y = (1-n/4) (Q/w?)? {28, —(B™)1,} (59

accurate to third order in offset (Q/w{). For small f™ the convergence parameter 7 is given by
n=2(1 —n/4XQ/w?)2 (60)

Convergence is weaker if C{™ does not produce a rotation about the z-axis, n{™ + e,, and in this
case the sense of permutation and juxtaposition on successive stages of the expansion also becomes
important.

Waugh suggested building up broadband cycles based on the starting cycle C\¥ = 360,360, 5, and
demonstrated their favourable properties by computer simulation. Shaka et al®*°?!" made an
important contribution by noting that since eqn. (60) ensures fast convergence anyway in the
neighbourhood of Q/w?=0, cycles with wider broadband properties can be designed by using a
starting cycle which is already perfect at some fairly large offset, and not worrying too much at its
performance at small offsets. The faults at small offsets are rapidly corrected on expansion, whilst the
good cyclic properties at large offsets are preserved. They chose instead the starting cycle
CP=2704270, 50, which is perfect (8= 0) at offsets Q/w$=0 and +7'/?/3. Expansion of this cycle
to order C{¥ using the Waugh procedure yields a highly efficient broadband cycle called WALTZ-
161292 given by

270, 50360180, 50270490, 501800360, 551800270, 56 —
270,360, 561805270, 490,180, 5,360,180, 502700 —
270,360 501805270, 590,180, 43604180, 40270, —
270, 663600180, 50270090, 501804360, 50,180,270, 5o
(61)

which has a vanishingly small rotation angle over all offsets —1.0<Q/w?<1.0. (In fact the
construction of WALTZ-16 does not follow the Waugh procedure completely logically, since the
‘natural’ second stage

2 =90,180, 5270490, 501800360, 551800270, 590,180, 56270,

was rearranged to give
CP=90,180, 503600180, 59270490, 501804360, 51800270, 54

Whether this logical inconsistency has a noticeable effect on decoupling efficiency is not known.)
Recently, additional variations on the theme have appeared, whch have been claimed to possess even
larger cycle bandwidths than WALTZ-16.2%?% A more thorough discussion of heteronuclear
decoupling is beyond the scope of this article.

Very long cycles such as WALTZ-16 are not much use in the construction of composite pulse
sequences. In this article we refer to the following short approximations to broadband cycles:

@) 36053604 50 (62)
(ii) 2704270, 50 63)
(iii) 180, 5,360,180, 50360, (64)

The first of these is a good cycle for small offsets. The second is a very rough cycle over an extended
range, providing however up to 30 degree rotations at intermediate offsets. The third is a refined
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version of the second, much more accurate (errors only about 5 degrees) but twice as long. In
addition, Star&uk et al>® have recently noted that cycles employing intermediate pulse lengths such
as 285,285,540 provide a compromise between these extremes. The properties of these broadband
cycles are contrasted in Fig.6, which show contour plots of the overall rotation angles produced by
the broadband cycles as a function of both r.f. field and resonance offset. For completeness, the
performance of the long cycles!! ¥

RORORI BORI SORORl 80R1 BORORl 8 ORORORI BORI 80R1 80R0R0
where
R;=90,240, 4,90, (65)
and WALTZ-16 [eqn.(61)] are also shown.

34.2. Recursive expansion of composite 90° pulses. We now introduce a fourth similarity
transformation of a pulse sequence, inverse formation'*”, which like phase inversion and cyclic
permutation, preserves the rotation angle of a sequence whilst changing the rotation axis. Forming
the inverse of a pulse sequence involves finding another sequence which produces an exactly
opposite rotation. If a sequence S has propagator U(S), the inverse sequence S'™ is such that

U™ =(UE) =(U(S) ™ (66)

It is clear that a sequence together with its inverse should form a cycle.

i
.
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F1G. 6. Numerical evaluation of the overall rotation angle f# produced by cyclic pulse sequences as a function of

both r.f. field w,/w] and resonance offset QO/w{. Full contours run from 15° to 120° in units of 15°, broken

contours are at 1°,5° and 10°. The sequences are (a) 360,360, 50; (b) 270,270, 4o; this sequence is broadband but

very inaccurate: (c) 1804360, 451804360, 5o; (d) ‘MLEV-16’ [eqn.(65)]; (¢) ‘WALTZ-16’ [eqn.(61)]. The numbers in
parentheses give the duration of the r.f. irradiation in units of a 90° pulse length.
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If resonance offset effects may be neglected, the inverse of a sequence may be formed by applying
the r.f. pulses in reverse order and with a shift of 180° in the phases:

If S= (B?)qs,(ﬁz).pz(ﬂa)qs; ﬁo)%

then

S = (B, 180 - (B 1808 180D, 1 67)

If resonance offset effects may not be neglected, it is not possible to form the inverse exactly, except.
in some special cases where the sign of resonance offset is under control of the experimentalist
through the application of static magnetic fields (this is the case in some imaging applications).
Nevertheless a good approximation for the inverse is still available in the form of a truncated
broadband cycle. Consider a broadband cycle C having an effective rotation angle f close to zero for
a range of offsets. If the cycle contains a terminal element P, it may be considered to be formed from
two unequal parts, CP~! and P, with propagators related by

UP)U(CP™ ) ~1 68)

Hence CP~! is a good approximation to P™™. Thus approximations to the inverse of a single 90,
pulse are the sequences 360, 3,270, 270, 5,180, 180, 4360,180,44270,, etc.

Assuming an inverse may be found, a recursive expansion procedure is available for progressively
refining the ability of some pulse sequence element P{™ to destroy z-magnetization:3”

PO =(Pg)™ P ‘ 69)

If resonance offset effects are neglected, application of this procedure to a starting sequence

‘¥ =90, produces successively the expansions P{}’=90,,090,, P =90,,,90,5090,,090,, etc. The
first of these was already discussed in a different way in Section 3.1. If resonance offset effects are
present, sequences such as P{=(P{Q)y™ P ~36044270,,090,"" are called for. It should be
remembered that if resonance offset effects are present, convergence of the procedure (69) is critically
dependent on the accuracy of the inverse.

A simple rationalization of the procedure (69) may be given. Suppose PY? represents some
rotation which takes a vector from the z-axis to a position n close to the xy plane. The propagator
for P{"* 1 may be written

U™ ) >~ U(PE)exp( —igl JUPE) eXp(igl 2> (70)

Neglecting the term on the right, exp(va ), which is irrelevant if the sequence is apphed to z-
magnetization, eqn. (70) represents a 51m11ar1ty transformation of the propagator exp(—tEI ) by P

Thus the rotation axis is moved from z to n near the xy plane. A 90° rotation about this axis prov1des
a much more efficient destruction of z-magnetization than the original rotation P§® (Fig.7). This is
stated more mathematically in Ref.(37).

3.4.3. Recursive expansion of 180° pulses. It is also feasible to design recursion procedures which
progressively refine the ability of composite 180° pulses to invert longitudinal vectors. If composite
180° pulses are denoted RY”, three of these procedures may be denoted!*3:4¢-47

R+ = RYY RO RYY )
where the value of ¢ is discussed below, and
R+ =R{M R R, RTY R, (72)
RY™+ )= REY R0 REY RYlo RY" )
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a b

Fic. 7. Physical basis of the recursive expansion of composite 90° pulses. (a) An inaccurate sequence P{™ should

rotate a vector from the z-axis to the xy plane, but the vector ends up at a position n instead. (b) The sequence

P{"*1) defined in eqn.(69) produces a rotation by 90° about n, which gives a more accurate transformation of z
into the xy plane.

For composite 180° pulses, a three- or five-fold expansion is indicated because the product of only
an odd number of inversion operations is another inversion operation.

The three-fold expansion, eqn. (71) is applicable only to time-symmetrical sequences R{™ (40
whilst the five-fold expansions, eqn. (72) and (73) may be applied to any inversion pulse. Also, the
three-fold expansion egn. (71) produces enhanced performance only with respect to r.f
inhomogeneity, whilst the five-fold expansion makes no assumptions as to the form of the pulse
imperfections.*” Even pulse shape and phase transient errors may be compensated in this way.

All of these expansions may be rationalized using coherent averaging theory. However the most
satisfying investigation of (71) was produced using the exact theory of non-commuting rotations as
in Section. 3.3.4* It was shown that if R{™ produces a rotation by an angle ™ about an axis in the
xy plane, then R{"* also produces a rotation about an axis in the xy plane but through an angle
B given by

cos(f™*V/2) = cosf™cos(f™/2) —cosgsin f™sin(f™ )2). (74)

Now in the absence of off-resonance effects, a single pulse always produces a rotation about an axis
in the xy-plane, and this property may be shown to be preserved by all time-symmetrical
expansions.**® In the case that ¢= 120°, deviations in § from 180° are corrected to second-order:

cos(fm*1/2)=cos3(f™/2). (75)

The expansion eqn. (71) also has the versatile feature that ‘coarse’ adjustments of the properties of
R are available by settingg # 120°. For example, if ¢$=90°, then those r.f. fields for which the
composite pulse R¢” performs so poorly that it destroys rather than inverts longitudinal
magnetization give ideal performance for R§**1.¢43 This facility for coarse adjustment allows rapid
progress towards sequences with very wide ranges of compensation. Starting from Ry = 180,, the
sequences

R =180,180,,180, (76)
and
R =18041804,180,1804,180,,,1804,180,180,,180, an
can be built up."*® One stage of coarse adjustment with ¢=90° followed by one stage of fine
adjustment with ¢=120° produces the highly compensated sequence“®

R = 180,18050180,180, ;6180 0180, ;0180018040180 (78)
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The five-fold expansions, eqns.(72) and (73), are even more powerful because they make no
assumptions at all about the form of the pulse imperfections or the sequences R§®. They were
derived very elegantly by recognizing that an arbitrary rotation through an angle § about the axis n
may be formed by juxtaposing two non-commuting rotations, both of which are about axes in the xy
plane and one of which is through 180 degrees:*”

exp(— pI-n)=exp(—irl-n )exp( —iel'n;). (79)

Here n.-e,=n,e,=0 and the angles ¢, { and y are parametrically dependent on f and n. Also, if
exp(—zﬂl n) 1s close to being a perfect inversion operation, then the angle € is small. Using the
property

exp( —inl-n Jexp( —iel'n;) = exp( — iel 'n. Jexp( —inln,) (80)

where {'=2y—{, it is possible to show that expansions as in eqns.(72) and (73) cancel ¢ to first order.
Tycko et al*” generated sequences up to and including R (with 625 pulses) and demonstrated the
spectacular insensitivity of such sequences to all types of pulse imperfection. A detailed investigation
of the properties of such expansion procedures using the mathematical method if fixed-point
analysis has recently appeared.”?

3.5. Transmutations of Composite Pulses

Once a particular composite pulse has been created by one of the methods described above, it may
often be transmuted into a different type of composite pulse by changing the phase of part of it, or
by combining it with another sequence related through similarity transformation. An example has
already been given: A broadband cycle may be transmuted into a broadband 90° pulse by changing
the phase of a terminal 90° element by 90°. Other important transmutations are the following.

(i) A composite 90° pulse P{™ may be transmuted into a composite § pulse ()3 by juxtaposition
with a similar sequence (P‘B"")inv derived by inverse formation and phase rotation by 37

[B)IBN" = (Py™ PP, (81)

In this equation, the composite pulse (8§ has been supplemented on the left by a rotation through
B about the z-axis, indicating that if this pulse is introduced into a sequence, the phase of this pulse
and of all subsequent pulses must be adjusted to take this into account, as discussed in Section 4.
Including the z-rotation, the propagator for sequence (81) is given by

U(Bs™exp( —iBl.)= U(PG )exp( — iBL)U(PS)"
=exp(—i¢"™ 1, )exp( —ipl Jexpi¢'™1,) (82)

where ¢!™ is the phase of transverse magnetization produced by the sequence P§” acting on z-
magnetization, and assuming that P{™ is well enough compensated to ignore residual longitudinal
components. The propagator of eqn.(82) corresponds exactly to a composite § pulse of phase ¢'™.

A special case of this procedure is when f=180°. Then PY” is transmuted into a composite 180°
pulse. Examples neglecting off-resonance effects are the composite 180° pulses RYY = 90,1804 ,90,
and R? = 90,,,90,4090,70180090,7090; 509057, derived from P’ and P{? given in the previous
Section. In the presence of off-resonance effects, pulses such as 270(,180180900‘20 21} may be derived
from P =90, and (P{)" ~270,4,180,, and also higher-order composite pulses such as

R = (o™ P
(PSY)™ PO Yo (PY)™ PP}
108)0 inv P(g) (Pgo))lnv P(O)
3600270, 569096360,702705090,, (83)

R
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which is known under the name GROPE-16.4? Higher-order expansions of this form have similar
properties to the 5-fold expansions of the previous Section in that they are capable of compensating
resonance offset effects and r.f. inhomogeneity effects at the same time, although their performance is
strictly limited by the difficuity in forming short inverse sequences of usable accuracy.

(ii) If resonance offset effects are neglected, composite 180° pulses which are symmetrical in time
may be transmuted into composite pulses of any flip angle § simply by shifting the first half of the
sequence by B relative to the other half. For example it is possible to derive the composite 45° pulse

180(18041804180,,090,;090,55180, 6518045180, 35180, (84)
from the composite 180° pulse R{? given in Ref.(43) and eqn.(78)

3.6. Other Approaches to Composite Pulse Construction

A few other ways have been suggested of constructing composite pulses. One of the more
interesting ones arises from the group of Pines.?* A class of continuous phase and amplitude
modulation schemes may be devised with broadband inversion properties.?428 739 The principles
of such modulation shapes are an extension of the theory of broadband 360° pulses which was
worked out in optical spectroscopy especially in conjunction with the phenomenon of self-induced
transparency!’® (The propagation of coherent pulses of particular shape through certain normally
opaque media.) If the r.f. amplitude is constrained to be constant (w, = w?), the phase modulation
¢(t) which gives a broadband 180° pulse has been derived to be (2%

$lt)=, wicosy tan {(wfsiny)r'} dr (85)

where the pulse extends from times t= —T/2 to T)2, over a total duration Tgiven by

T=n/(w? siny). (86)

Here the parameter y controls the degree of off-resonance compensation of the pulse; y =90° leads to
a conventional unmodulated 180° pulse with no compensation, whilst if y approaches zero, the pulse
becomes longer and acquires broadband properties.

For practical applications on conventional instruments, it has been suggested to approxi-
mate this smooth modulation scheme by a set of discrete pulses with different phases. This
gives the composite 90° pulses®® 84,251,845, 64,5,122,310,1224464,;,, and
3932054,09601308470267,84,,66,3954,00393,0 (The last two sequences were printed incorrectly in
Ref. (24).)

This method of generating composite pulses is of theoretical interest, but in practice has little to
recommend it. The considerable length and inconvenient phases of the last two sequences are not
compensated by their providing particularly spectacular bandwidths, and it is difficult to see how to
generalize this approach to other types of composite pulse. However continous modulation schemes
themselves rather than their discrete approximations probably will have a promising future. Some
similar suggestions have been given by other workers.(?8~39

3.7. Symmetry Properties

It is often desirable to exploit symmetry arguments in determining the effect on a pulse sequence
of transformations such as reversal of the order of the pulses in time, or reversing the sense of phase
shifts. Symmetry arguments are also useful in deciding if the performance of the sequence depends
on the sign of the offset from resonance. Most of the relevant properties may be deduced by
considering the propagators for three different pulse sequences, called here 4,B and C, which are
related to each other through the following transformations.
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(a) B is derived from A by reversal of the order of all pulses in time, retaining the sign of all phasé
shifts, so that

Pa(t)=Pa(t—1) (87)
where 1 is the duration of the sequence.
(b) C is derived from A by reversing the sense of all phase shifts, keeping the order in time, so that
clt)= —4(t) (88)
For example, if 4=90,180, ,, then B=180,,,90, and C=90,180,,,.

Neglecting as usual spin-spin couplings, it can be shown that the propagators for the three
sequences are related by

Up(Q) = exp(—inl,) U (—Q)texplinl,) (89)
Ud) = exp—inl) U,(—Q) explinl,) (90)

where all propagators are expressed as functions of offset Q.

As an example of the application of such expressions, consider a pulse sequence which is
symmetrical in time (A=B) acting on an initial density operator o(0)=1,. The resultant z-
magnetization as a function of offset is given by

Q) =T {U QI UQ)1L, }
=Tr{U Q.U () }
= Tr{exp(—inl YU ( — Qexp(inl, ) exp( —inl,)U (— Qtexplinl )i, }
=Tr{U(~ QL U(-Q)1, }
=<I>7(~-Q) ©1)

using the invariance of the trace to cyclic permutation. Hence the z-magnetization after a time-
symmetrical pulse sequence is independent of the sign of resonance offset.3®

As a second example, consider a sequence containing pulses only of phases 0 or 180°. In this case
A=C, and we have

LT Q) =T {U (U (D)L}
Tr{exp(—inl YU ,(— Q)exp(inl ) exp(—inl )U (- Qtexplinl ), }
=T {U(—QN—1)U (- (- 1)}
=<{I>7(-Q) 92)

Hence here too, the z-magnetization is independent of the sign of resonance offset. This can also be
demonstrated for {J > *. However <I.)>* changes sign if the off-resonance term is inverted.

Many more relationships on similar lines may be derived. A further example which has already
been mentioned is that the overall rotation produced by a time-symmetrical sequence applied on
resonance is about an axis in the xy-plane.“*® Additional symmetry properties are encountered when
composite pulses are applied to dipolar-coupled systems; the expectation value of any angular
momentum component after an arbitrary pulse sequence applied to z-magnetization is independent
of the sign of the couplings.4®

3.8. Far Off-Resonance Behaviour

Most of the composite pulses so far described have been designed with the intention of
applications in high-resolution NMR, where resonance offsets are usually of the order of the r.f. field
strength. However there are a number of potential applications within and outside NMR in which
behaviour far from resonance is of interest. An example is selective excitation, where weak
composite pulses could be used to provide a flat frequency response over some band of resonances.
This would be particularly useful in NMR imaging, since it would allow uniform excitation within a



86 M. H. LEviTT

flat slice selected by a static magnetic field gradient. Applications of composite pulses are also
conceived in coherent laser spectroscopy.’#~7® Here the considerable inhomogeneous broadening
of many lasers compared to the strength of the interaction between the electric field and typical
electronic transitions also provides large off-resonance effects.

Warren has shown by using a form of coherent averaging theory that sufficiently far from
resonance, the effect of arbitrary pulse sequences is proportional to the Fourier transform of the
excitation.®® Thus the linear approximation, which we emphasized above to be very poor near to
resonance, regains its validity if offsets become large. (This needs some qualification in the light of
the demonstration of high-order NMR resonances in the case of suitably modulated r.f. fields, which
show that even for weak irradiation with no Fourier components close to resonance, strong non-
linear perturbations of the spin system may result.”” ~7® However these ‘multiple-photon effects’
need considerable time to develop and can usually be ignored.) The resurrection of the linear
approximation at high offsets is bad news as far as the direct application of composite pulses is
concerned, since the sudden phase shifts involved in composite pulses give wild oscillations in the
frequency spectrum far from resonance. Hence smooth modulation of amplitude and phase is called
for in developing frequency-selective pulses, rather than the discrete modulation schemes discussed
above.24 731 This of course does not rule out many useful applications in NMR imaging where
excitation or inversion of all spins in the sample can be achieved using strong composite pulses.
Also, it might be possible to round the shapes of composite pulses so as to remove the oscillatory
characteristics far from resonance without perturbing too much the good behaviour at small offsets.

4. CLASSIFICATION AND PROPERTIES OF COMPOSITE PULSES

4.1. Classification

We have seen in the previous Section that there are numerous methods for creating composite
pulses, based on different theoretical approaches. It is not surprising that the different approaches
give rise to composite pulses with different properties. To ease discussion of the way in which
composite pulses can be introduced into a multiple-pulse NMR experiment, we now introduce a
system of classification according to the transformation properties of the pulse sequences.

We assign composite pulses to four classes, which we call A, B1, B2 and B3. The characteristic
features of the four classes are as follows.

(a) Composite pulses of type A produce, over a particular range of imperfections, a fully
compensated rotation of the system, so that

U,=U,° 93)

This implies that, within some approximation, all initial states of a spin system are rotated to what
their values would be after an ideal pulse. Hence this type of composite pulse is the most versatile of
all. Numerical optimization with the help of coherent averaging theory seems best suited for
creating this type of composite pulse,(44:45:48)

Composite pulses of type B, on the other hand, do not enjoy such full compensation of the
propagator, so the compensation effect depends somewhat on the initial condition of the spin
ensemble and the tolerance of the particular experiment to phase errors. We define the properties of
the sub-types B1,B2 and B3 as follows.

(b) Composite pulses of type Bl produce, over a range of imperfections, a partially compensated
rotation such that

U,~exp(—idsdi) Up expliieid i) (94)

Thus the compensated propagator differs from the ideal propagator only by an overall phase shift,
which may be dependent on the pulse imperfections, and in the case of off-resonance effects, may
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differ from spin to spin. The theory of composite pulses discussed in Sections 3.3 to 3.6 often creates
this type of composite pulse.

(c) Composite pulses of type B2 enjoy a compensated transformation of one particular initial
condition, usually I, to one particular final condition, i.e.

U U, ~UJLU. ©5)

The transformations of other initial conditions may not even resemble the ideal ones.

(d) Composite pulses of type B3 give again a compensated transformation of one particular initial
condition, but the phase of the final density operator is not compensated and may depend on the
imperfections, i.e.

U LU, ~exp( =i sl i) UL USTexpliY aeil ) (96)

As examples of these last two categories, composite 90° pulses often produce compensated
transformations I,— —1I (category B2) or I,—I'n, (category B3; ¢ is arbitrary). In general, the more
pictorial approaches to composite pulse design tend to produce partially compensated rotations of
these last two types.

a B3

<

O®
OB

FiG. 8. Classification of composite pulses. {a) Venn diagram showing the mutual membership of classes A, B1,

B2 and B3. (b) The types of transformation belonging to the four classes for a composite 90° pulse. Class A

contains only ideal transformations through 90° about a defined axis in the xy plane. Class Bl tolerates phase

deviations in the rotation axis. Class B2 is concerned only with the transformation of one particular initial

condition to one particular final condition, the rotation not being uniquely defined. Class B3 also tolerates phase
errors in this final condition.



88 M. H. LEviTT

The four classes are not mutually exclusive; for example, a composite pulse of class A also
simultaneously belongs to B1, B2 and B3 as well. The Venn diagram of Fig. 8a is intended to clarify
this. Fig.8b shows, for a composite 90° pulse, the different types of rotation which can be
accommodated in the four categories.

For composite 180° pulses, a simplification takes place because the only rotations which produce
a transformation I,— — I, are of the form

exp(— istkI k) €XP(— i”ZkI k) eXP(istkI K2} 97)

i.e. 180° rotations about axes in the xy plane. Thus all classes B1, B2 and B3 share the same members
in this case, and composite 180° pulses may be termed B-type without ambiguity (Fig. 9).

4.2. Comparison of Composite Pulses

In Tables 1-2 we group most of the useful known 90° and 180° composite pulses into the four
categories presented above. A subjective judgement as to whether the compensation is ‘low’
‘moderate’ or ‘high’ is also given. This will be placed on a more quantitative basis in a moment. For
many of the pulses in categories A or Bl, a supplementary z-rotation has been appended to the pulse
sequence. This indicates that the overall propagator of the sequence must include an ideal additional
rotation about the z-axis. In practice phase adjustments of subsequent pulses are necessary in order
to take account of this as is discussed in Section 4.3.2.

Dieter Suter of the ETH-Ziirich has kindly made available a PASCAL computer program for
numerical simulation of composite pulses. The program calculates the overall rotation angle g and
axis n generated by a composite pulse in the presence of simultaneous r.f. inhomogeneity and
resonance offset effects by application of Hamilton’s eqn.(49) to the propagators defined in eqns.(18).
The overall rotation may then be compared with an ideal rotation, or applied to I, and the
transformed density operator examined. Parameters of interest may then be displayed as contour
plots against the two parameters Q/w{ and w,/w{. In the diagrams discussed below, all contour plots
are drawn with full contours spaced at 0.2 intervals and dotted contours appearing at +0.9 +0.95
and +0.99.

<

N9 /
A B

FiG. 9. In the special case of a composite 180° pulse, classes B1, B2 and B3 coalesce.
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4.2.1. Composite 90° pulses

In Figs 10-18 we examine the performance of various composite 90° pulses according to criteria
appropriate to categories A, B1, B2 and B3.

(a) For category A the rotation produced by the composite pulse should be compared with an
ideal 90, rotation. The question arises as to how to compare quantitatively two rotations as abstract
entities, without referring to the transformation of a particular initial condition. A suitable
framework is provided by quaternions,*® which are four-dimensional unit vectors with elements
related to the rotation angle § and rotation axis n of a rotation operator by

q= {cos(8/2), ne,sin(p/2), n-e,sin(p/2), n-e,sin(p/2)} (%8)

It seems reasonable to take as a measure of the deviation of a rotation from ideality the scalar
product of its quaternion with the quaternion for an ideal rotation; this has unit magnitude if the
rotation is ideal and less than unity for an ideal rotation (if the scalar product is —1, this also
indicates an ideal rotation; for example the ideal rotations 903 and 2702, are to be counted as the
same thing). For an ideal 90, pulse the quaternion is

q°={2712%,2712,0,0} (99)
so the quantity
A=1q-q°|=27"?|cos(B/2)+n-e,sin(B/2)| (100)

is used as a measure of the ideality of composite 90° pulses of type A.

(b) For composite pulses of type Bl, the quaternion for the composite pulse should also be
compared with the quaternion for an ideal rotation, but this time the phase of the rotation may be
ignored. A parameter A’ is used, given by

A'=2"12{|cosB/2| +[sinf/2|[(n-e,)* +(n-e,)*] /2 }. (101)

This parameter is again unity for an ideal rotation, and less than unity for a non-ideal rotation.
(c) Composite 90° pulses must be judged in category B2 according to the y-magnetization
produced by the sequence when it is applied to I

AU, >* =Tr{exp(~ifI'n) Lexp(ifl-n) LYT{I})}. (102)

The y-magnetization is — 1 for an ideal rotation, and greater for a non-ideal rotation.
(d) Category B3 differs from category B2 in that the phase of the transverse magnetization is
ignored. The relevant parameter is (I,,>* given by

L ={(ADTP+KIT)? 2 (103)

which is one for an ideal rotation.

A single 90, pulse and four composite pulses are compared on the basis of parameter A in Fig.10.
Two of the composite pulses were designed by coherent averaging theory*® to give r.f. field
compensation. That this was successful is revealed by the elongation of the region of ideal
performance in the vertical direction in the contour plots. The performance of the sequence
385,320, 4425, designed by coherent averaging theory so as to give off-resonance compensation, is
also shown and indeed displays a moderate elongation of the dotted contors in the horizontal
direction. For comparison, the performance of the sequence [90,]180,360,501804270,4,90g, is
also shown. This was derived by the different approach of Section 3.4. This method of generating
composite pulses does not give a fully-compensated propagator, as is revealed in the diagram which
does not show a noticeable widening of the region of good performance.

If the phase of the propagator is ignored, as in category B1, the relative merits of these sequences
appear somewhat different. In Fig. 11 the parameter A’ is shown which is calculated for a single 90,
pulse and five composite pulses, three with r.f. field compensation and two with offset compensation.
The three pulses derived by coherent averaging theory retain their previous ranges of compensation,
but they now have competition in the form of the rf field compensated sequence®”
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Fic. 10. Numerical evaluation of composite 90° pulses according to the parameter A [eqn.(100)], appropriate

for A-type composite pulses. Full contours in 0.2 intervals, dotted contours at +09, +095 +0.99. The

sequences are (a) 90,, the r.f. field compensated pulses (b) 270;4(360349180,,3180355[70,1.*® (c) 904180, 45

180,,5[ —60,]1*® and the resonance offset compensated pulse (d) 385,320,425,/ The sequence (e)

[90,1180,360, 351804270, 090,771 is also shown, but does not display compensation. Overall durations in
units of a 90° pulse are given in brackets.

[90,190; 69055906900090, 36909090,5090;76  and  the  offset-compensated  sequence®®”-"!
[90,11804360; 501804270, 309050. These latter two may be generated by the methods of Section 3.4,
and have very wide compensation bandwidths if the phase of the propagator is ignored.

When the y-magnetization generated is the criterion of ideality (category B2), different
possibilities again exist (Fig. 12). The three coherent averaging sequences again perform well. For r.f.
field compensation, the simple sequences 903001804, and 455090490,,045, created by simple
geometric arguments % should also be considered. Their ranges of compensation are modest, but
they are not too sensitive to resonance offsets.



Composite pulses 93

FiG. 11. Numerical simulations of composite 90° pulses according to the parameter A’ [eqn.(101)], appropriate

for Bl-type composite pulses. The sequences are (a) 90, the r.f. field compensated pulses (b) 270, 50360545180,

180,55[70,1.4% (c) 90,180, 51805, 5[ —60,1.1*® (d) [90,]90; 5090590090990, 5090590, 5,90, " and the offset
compensated pulses () 385,320, 5025,.*% (f) [90,]1180,360, 51180270, 5090453771

If the phase of the transverse magnetization may be ignored (category B3), the selection is wider
again, as is shown in Fig.13 and 14. It is apparent that a single 90, pulse already has only a weak
offset-dependence when judged by <I.,>", as is well-known. Four sequences are also shown with r.f.
field compensation, the coherent averaging sequences 90,180, 651805 s[ —60,] and 270,4360;4
180, ;180,55(70,]*® being among them. These two are highly compensated, but rather offset-
sensitive. The simple sequences 90,905, and 9054018043329 also display considerable r.f. field
compensation when judged by <I,,>*. For off-resonance compensation, 385,320,4,25,*% is
superior to 90, only for very small offsets.

JPNMRS 18/2-C
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FiG. 12.  Numerical evaluation of composite 90° pulses according to {I,>*, appropriate for B2-type composite

pulses. The sequences are (a) 90,, the r.f compensated pulses (b) 270,4,360340180;,3180555[70,1,4® (c)

90,180, 51805, s[ —60,1.4% (d) 90550180407 (&) 454090090,7045,.>® and the offset-compensated pulse (f)
' 385,320, 4525,.4%

The sequences 360,270,3,909, and 1804360,5180,270, 4,905,771 (Section 3.4) give some
measure of simultaneous r.f. field and resonance offset compensation.

4.2.2. Composite 180° pulses. In Figs 15-18 we compare the large number of composite 180° pulses
which have been suggested, in this case for simplicity only according to the degree of inversion of
longitudinal magnetization, {I,>*. As in the previous calculations, the contours are given in 0.2
units from —0.8 to 0.8, with dotted contours at —0.9, —0.95 and —0.99 appearing in the region of
ideal behaviour.
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Fic. 13. Numerical evaluation of composite 90° pulses according to I,,>*. appropriate for type B3. The
sequences are (a) 90, and the rf. compensated sequences (b) 270, 50360340180,,3180455[70,14® ()
90,180, 0518037 5[ —60,1.4® (d) 9050900 (€) 9030018060*

Figure 15 shows the performance of a single 180° pulse, compared with three-element composite
pulses of the form 90,88,90,. The roughly T-shaped form of the contours in Fig. 15b shows that
90,180,090, compensates either small r.f. field errors or, to some extent, resonance offsets, although .
compensation of the latter is not very precise. Resonance offset compensation is made more accurate
by increasing the length of the central pulse, at the expense of bandwidth.*273% The sequence
90,2704,90, has H (9 =0 for off-resonance effects.!*¥ ‘ i

Figure 16 shows the outcome of various attempts to improve the r.f. field compensation.
Displayed is the calculated performance of the sequences 904360, 30900, 9044900900180,
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Fic. 14. Evaluation of composite 90° pulses according to {I,,>". appropriate for B3-type sequences. The
offset-compensated composite pulses are (a) 385,320,4025,.4® (b) 360,270,,4,905,.277 and (c)
180,360, 541804270, 5,906,771

90,469009050,3" 180,180, ,,180,,*% and the expanded sequences 180,1804,180,180,,,180,,,
180, 50180,1804,180,¥ and 180,180, 5180,,,3605..*® The range of compensation of the last two
is clearly very large, but this is at the expense of a high sensitivity to resonance offset. A striking
feature of the first three sequences is that although they were constructed using quite different
principles, their performance is very similar.

Sequences with improved resonance offset compensation are compared in Fig.17. The sequences
9042005 480,702009090,,39  393,054,0966, 398470267 ,847066, 305430939320.2* 90,180,4,270, and
1804360, 50180,270, 090,292V all give wider bandwidths, but also without being very accurate. The
last two have the important feature, however, that they involve only 180° phase shifts, making them
very suitable for heteronuclear decoupling,2%-2! or after division of all pulse lengths by two, for spin
I=1 NMR®? (see below). The accuracy of the spin inversion can again be improved at the expense
of bandwidth by using the sequences 90,225,5,315,°% or 336,246, 57109,74 5701090246, 55336,.4®
A unique feature of the last of these is that, being derived from coherent averaging theory, the phase
of the overall rotation is also compensated (sequence of type A).

Figure 18 shows that 180° pulses can be created possessing compensation of simultaneous r.f. field
and resonance offset imperfections. Two fairly short sequences with this property are
3605270, 509050360,,02705,90,4? and 360,180, ,01800180, ,0.*” The truly spectacular per-
formance of Tycko’s sequence of 25 180° pulses with phases'*”

0,0,120,60,120,0,0,120,60,120,120,120,240,180,240,60,60,180,120,180,120,120,240,180,240
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Fi1G. 15. Numerical evaluation of composite 180° pulses according to <I,>™. (a) 180, (b) 904,180,904, (c)
9044240904 ¢, (d) 9042704904327 34

I

c

Fic. 16. Rf. field compensated 180° pulses (2) 904360, 5690029 (b) 905090905701806905709009050.°" (©)
180,180, 3018064 (d) 180,1805,180,180; 501805180, 2018018051800, (¢) 18001801 051802, 6360s5:
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FiG. 17. Resonance offset compensated 180° pulses (a) 9092004,80,762005,90,,¢ (b) 90,180, 35270,.2%*" (c)
336,246, 5010,0742701005246, 5 03360.“® (d) 1805360, 501805270, 5090, 2%21) (&) 395,654 ,0966, 3984702670847,
661 395420939329’(24) (f) 9002251 8()3150"50J

(LY

50.0)

w,/w?

Fic. 18. Composite 180° pulses with simultaneous r.f. field and resonance offset compensation (a)
3600270, 509050360,702709900, “? (b) 360,180, ,0180,,180;,0.4" (c) Tycko 25-pulse sequence*” and the
r.f. selective sequence (d) 180018090180180180120180210180300180240180330180(,0.“3’
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is also shown; it is unfortunate that this sequence is too long for gereral applications. Figure 18 also
gives the performance of the sequence®

180418056180, 50180, 5018051 0180500180540180330180¢o

designed to give a good population only at a specific value of r.f. field, and to leave the spin system
unperturbed at other values. From the plot given, it is clear that great care must be exercised in
minimizing off-resonance effects if this sequence is to operate correctly.

4.3. Usage

The applications of a given composite pulse are determined by its category. Composite pulses of
type A may be used in all contexts. However they do often involve inconvenient phases, and
especially for off-resonance effects, a limited range of compensation. Composite pulses of categories
B1, B2 and B3 may not always be used, since the precise form of the propagator depends on the
pulse imperfections, but when they can, they will often be found to have advantages over those of
category A.

4.3.1. Pulses of type B2 and B3. Pulses of categories B2 and B3 are the most limited in their
use. Since they are only compensated for the conversion of I, into a specific final condition, they are
successful only for those experiments where this is the only transformation which occurs. This
implies that they may be applied only in the case that the system is described by populations alone,
coherences being absent. In addition, it must be decided if the phase of the final density operator is
important. For example, when transverse magnetization is excited by a 90° pulse, offset-dependent
phase errors are unimportant since they are easily corrected after Fourier transformation of the
signal by complex multiplication of the data. Therefore in this context offset-compensated pulses of
type B3 are sufficient, and often a single 90, pulse is good enough. On the other hand, if an
inhomogeneous r.f. field is present and it is desired to excite a signal, phase errors proportional to
the r.f. field strength may not be tolerated since they cause destructive interference between signals
from different volume elements. In this case, no manipulations of the spectrum can retrieve the loss.
Thus composite 90° pulses of class B2 (or A) are called for in exciting the signal in an
inhomogeneous r.f. field.

Similar considerations apply to composite 180° pulses, although here it is almost always possible
to use pulses of type B if care is taken. In contexts where the sign inversion of I, is the necessary
transformation, pulses of type B may clearly be used. Even in situations where the 180° pulses are
used as refocussing pulses, phase errors in the rotation produced by composite pulses of type B can
always be compensated by refocussing twice instead of once.®*® Alternatively, the whole pulse
sequence, including the 90° pulses, etc. can be compensated in phase-consistent fashion by using
throughout sequences of type A or Bl (see below).

4.3.2. Pulses of type A and BI; supplementary z-rotations. General pulse sequences in which the pulses
operate on a wide variety of initial conditions must be compensated using sequences of type A or B1.
This needs care when the composite pulses are such that they require “supplementary z-rotations” to
put the propagators in the required form. For example the propagator of the r.f. field compensated
90° pulse*® 270, 50360545180, 3180554 is equivalent to that of 90, only if supplemented with a final
[70,] rotation. These z-rotations, which are independent of the imperfections, must be taken into
account experimentally by changing the phase of subsequent pulses, in the opposite direction to the 2-
rotation as written. Thus the sequence 270, 30360349180, 3180355—1-270,50360349180,, ;180,54 does
not behave like 90,-71-90,, whilst the sequence 270, 47360349180,,31803554—7-270,,,360,7,5180, 35
180,55[140,] would. Not all sequences require a supplementary z-rotation; the 180° pulse
180,,5180,180, 453603, 4 does not, for example.

A similar situation arises if composite pulses of type Bl are chosen, for example for wideband
compensation of off-resonance effects. When derived by the procedures given in Sections 3.3.-3.5,
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this leads to sequences with propagators of the form eqn. (82). Again each pulse is associated with a

supplementary z-rotation. But this time the way the sequence is constructed implies that the
supplementary z-rotation is equal in magnitude to the nominal flip angle, requiring a phase shift of
all subsequent pulses. by minus that amount. When all pulses are built up the same way, by
juxtaposing sequences (P‘,‘,”‘))‘"" and P{? as in Section 3.5, a simple procedure can be devised for
specifying the phase of all pulses in the sequence: Replace all pulses (ﬂg)q,p by composite pulses
(P‘¢"!:)"" P‘;fi » where the phases ¢', and ¢”, used for the two halves of each composite pulse are given
by

¢p=0,— 2521 B, (104)
and '

¢"y=9¢,— B (105)

Equation (104) takes into account the intended phase ¢, of the rotation and the history of all
accumulated z-rotations. Equation (105) supplies a phase difference between the two halves of the
composite pulse which is equal to the intended rotation angle. A sequence compensated in this way
has an overall propagator which differs from that for an ideal pulse sequence only by extra phase
rotations of the initial and final conditions:

Ucomp=exp{ — L™ ~ X2 1S } Uexp i3 udi™ 1. } (106)

where ¢{™ are properties of the composite pulse, eqn. (82), and U here signifies the propagator for the
entire pulse sequence including delays. Since the composite pulses are of type Bl, the phase errors
¢!™ may be dependent on the imperfections. But especially in the case of off-resonance effects, these
extra phase factors are easily corrected and should not present a problem.

To make this discussion concrete, consider the pulse sequence for double-quantum spectroscopy:

90,, —1/2-180,,-t/2-90,,,~t-90,, 1, (107)

where the phases ¢, to ¢, may be cycled from transient to transient to achieve selection of a
particular history of coherence orders,” but this does not concern us here. To compensate this
sequence for large resonance offsets, it is neccessary to use composite pulses of type B1. Sequences of
the form (P,)™ P, are suitable where P,=90, and (Po)™ =180,40360,180, 5,270, (Section 3.4).
Employing eqns. (104) and (105), the compensated sequence is

180, + 180360, 180,, + 180270,,90,, 450 ~1/2-
180, +90360,,+ 2701804, +60270,, + 27090, +90 —7/2-

180 4, + 270360, +90180,; + 270270, +90904; + 180 —t1—
180, +150360,,180,, +1802704,90,, + 90 —t2. (108)

The sequence above is a rather more consistently constructed version of a compensated double-
quantum pulse sequence published earlier.*® It should produce the same result as a normal pulse
sequence, except for having broadband characteristics, and for giving a final spectrum possessing an
easily corrected phase gradient. Experimental results using this sequence are shown in Section 5.

If it is wished to compensate the same sequence for r.f. field errors, the same procedure may be
used with B1-type composite pulses such as Py =90,904, and (P)™ =90,,,90; go. This compensates
the main body of the pulse sequence but in this case the compensation effect is counteracted by
phase errors dependent on the r.f. field strength which may cause partial destructive interference.(*®
It is better to use sequences of type A in this case leading for example to

270¢,+13036O¢.+349180¢| +213180¢, +3s8 —T/2-

180, + 151805, 4 2001804, + 35360, + 204 —T/2—

2704 41103604, +275180,4; + 1431804, 1 288 ~t;—

2704, +40360,,+ 2191804, 4731804, 4+ 215 —£3. (109)
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Let us repeat again the considerations which must be taken into account in deciding which
procedure to use for compensating some general pulse sequence. Sequences of type A may always be
used, but sometimes with the sacrifice of some bandwidth. It is permissible to use sequences of type
B2 or B3 only if the initial condition is entirely described by populations. To choose between these
two classes it is neccessary to decide if phase errors in the final density operator are tolerable, which
will depend on the experiment. In compensating more general experiments, in which the pulses are
applied to density operators involving coherences, one must choose between pulses of type A or Bl.
It is permissible to use sequences of type B1 if the phase of the final density operator can be shown to
be unimportant. This is usually the case with off-resonance effects because phase correction after
Fourier transformation is possible. It is also possible for correction of inhomogeneous r.f. fields in
the case of heteronuclear experiments, where the pulses on the channel not to be observed are
compensated, since the signal observed on one channel must always be independent of overall phase
shifts on a different frequency. However, for compensation of r.f. field errors in homonuclear
systems, sequences of type A are superior, since they do not give a phase distribution of the final
signal which is a function of the r.f. field strength.**® Whenever a general sequence is compensated
by using composite pulses of type A or B, care must be taken to take account of supplementary z-
rotations by introducing extra phase shifts. For sequences of type B1, a simple recipe to do this is
available since the supplementary z-rotation produced by each composite pulse is equal to its flip
angle.

Finally, we should point out that if composite pulses of type A are used, it is permissible to replace
the pulses one at a time by composite pulses, and provide a continuously improving performance.
But if composite pulses of type B1 are employed, because of their phase characteristics it is usually
essential to replace all pulses simultaneously by composite pulses of similar structure; no
intermediate stages are possible.

5. APPLICATIONS OF ERROR COMPENSATION

In this Section we discuss the application of composite pulses to several experiments in isotropic
liquids. We discuss separately the manipulation of populations, the manipulation of Hamiltonians
and the manipulation of coherences.

5.1. Manipulation of Populations

The manipulation of energy level populations by composite pulses has proved to be one of the
most straightforward and successful applications. The first application of a composite pulse was the
accurate inversion of spin populations by the 90,180,,90, sequence, in order to allow measurement
of relaxation times by timing the null-crossing in the recovery from completely inverted to thermal
equilibrium populations.®*? This particular application can certainly be criticized on the grounds
that the null-point method is certainly a very weak measurement technique anyway, and that in fact
any other single point on the curve will do, providing the initial populations after the (imperfect)
inversion are known, and the recovery is truly exponential. Single-point determinations cannot
compete with measurement of the full recovery curve in accuracy and can only be justified if
measurement time is limited. Nevertheless population inversion by a composite pulse is useful in
routine T; determinations, even if a full recovery curve is measured, since the more exact the spin
inversion, the higher is the dynamic range, and the more accurate the value of T;. Also, very exact
population inversion allows a 2-parameter fit rather than a 3-parameter fit. One must anticipate that
for the same reason composite pulses could be used profitably to obtain T;-dependent NMR
images.®® especially since r.f. fields are often quite inhomogeneous in high-frequency imaging
systems.

Destruction of populations by composite 90° pulses is also useful in certain other methods for

measuring relaxation times, such as ‘saturation-recovery’.¥
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Composite 90° pulses find further uses in relaxation time measurements in coupled spin systems
where it is sometimes desirable to ensure that only the total Zeeman magnetization Y[, is
measured and not muitiple-spin terms like 21,1, etc. After an ideal 90° pulse, the multiple-spin
terms should be completely converted into multiple-quantum coherences and should give no signal.
If the pulse is non-ideal, however, antiphase contributions to the signal may result. A composite 90°
pulse which takes z-operators very exactly into the xy plane is appropriate in this case. Bodenhausen
et al.'®V) have suggested using composite pulses to suppress longitudinal multiple-spin order in two-
dimensional nuclear Overhauser spectroscopy, and Shaka et al'”! have demonstrated the utility of
composite pulses of type B3 (in particular, 360,270,4,904,), for a similar purpose in nuclear
Overhauser difference spectroscopy. The very accurate and wideband destruction of z-magnetization
by 360,270, 50905, (Fig.14) makes it very well-suited for this particular purpose.

5.2. Manipulation of Hamiltonians

The most important application of composite pulses for the manipulation of spin Hamiltonians is
of course broadband heteronuclear decoupling by such sequences as WALTZ-16."* =23 However
treatment of this large subject is beyond the scope of this article.

Another application which might be considered as a manipulation of a spin Hamiltonian is the
refocussing of magnetic field inhomogeneity by multiple 180° pulses.®*® In the absence of spin-spin
couplings, in which case special problems are encountered (see below), it was suggested that
composite pulse schemes might be better for compensating cumulative pulse imperfections than the
usual Meiboom—Gill method, which makes no attempt to compensate the individual rotations but
simply places the magnetization vector in a favourable position with respect to the imperfections by
introducing a 90° phase shift between the initial 90° pulse and the train of 180° pulses.*® Composite
pulses compensate the individual rotations themselves, and so so should be superior. (In this
application, error-dependent phases of the B-type composite pulses may be compensated by using an
even number of echoes.®*¥) Actually this application of composite pulses proves disappointing on
closer inspection. It turns out that in the Meiboom-Gill method, the major effect of the pulse
imperfections is to ‘lock’ the transverse magnetization along its initial position, which tends to
overcome interference from field fluctuations and other perturbations, and often actually improves
the appearance of the multiple-echo train. The locking effect is reduced if the compensated pulses are
introduced, so here the more highly-compensated sequence often behaves in an apparently worse
manner. This ‘double-edged’ nature of pulse imperfections is a common feature of many experiments
and has often made it harder than anticipated to demonstrate the benefits of composite pulses.

Another application of accurate broadband cycles which can be conceived is one where very dense
pulse sequences are applied to coupled spin systems for long periods of time in order to create
evolution under an effective Hamiltonian which contains scalar couplings but no chemical shift
terms (‘isotropic mixing’).82~ 84 If the correlations between coherences are mapped out using two-
dimensional spectroscopy,®® transfer of information between quite distant spins can be
demonstrated. Almost any dense pulse sequence suppresses chemical shift interactions leaving scalar
couplings, but only broadband cycles could do this without producing any other overall rotation of
the spin system. There are cases where this might be useful, since the high symmetry of the pure
isotropic coupling Hamiltonian is responsible for a large number of selection rules, leading to a
considerable simplification of the two-dimensional spectrum.’®® Bax et al.®> have also proposed a
variant of this method in which alternating-phase spin-locking is applied for the mixing instead of a
sequence of discrete 7 pulses. If composite pulses are interposed between the periods of opposite
phase irradiation, this variant is less sensitive to off-resonance effects. The compensated mixing
sequence which has been suggested is (8, 300,50 60y 150 300, 60,5,)", where 8 is large and n is a
small integer.

5.3. Manipulations of Coherences

Composite pulses are definitely useful in improving the accuracy of coherence transfer processes.
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They are especially important if a pulse occurs in the middle of the evolution period in a two-
dimensional experiment, so that the frequencies in the spectrum should be linear combinations of
the evolution frequencies of particular pairs of coherences before and after the pulse. This is the case
in two-dimensional J-spectroscopy,'’®® where a 180° pulse occurs in the middie of the evolution
period to transfer the accumulated phase of one coherence to another related by spin inversion
[eqn.(16)]. It is also true in heteronuclear two-dimensional experiments, where a centrally-placed
180° pulse on one spin species is used for removing heteronuclear coupling frequencies in the ©,-
dimension.’®” 180° pulses are also often used in multiple-quantum spectroscopy,!*? to refocus
magnet inhomogeneity, and in two-dimensional nuclear Overhauser spectroscopy,®8-# where they
are introduced with variable timing so as to shift the frequencies of zero-quantum interference
peaks.®%®! In all these experiments, it is important that the 180° pulse induces only the desirable
coherence transfers, otherwise unwanted lines appear in the two-dimensional spectrum. The
suppression of such artefacts by composite pulses has been demonstrated,®? and their consistent use
can be recommended. However it is wise to remember that strong coupling, like pulse imperfections,
can also cause an unwanted mixing of coherences, so that not all unwanted spectral lines can atways
be removed by introducing composite pulses. In the case of heteronuclear correlation spectroscopy,
it is therefore better to use full broadband decoupling by a sequence like WALTZ-16 rather that to
introduce a central 180° (composite) pulse to produce decoupled frequencies in the w,-dimension.t®®

Measurement of spin-spin relaxation times in coupled spin systems by multiple-echo trains also
requires accurate 180° pulses to avoid loss of control over the coherences. Advantages in using
composite 180° pulses could be demonstrated.*# However it must be pointed out again that only in
very weakly-coupled ‘model’ systems can successive coherence transfers be carried out accurately
enough, and even in favourable cases the 180° pulses must be very widely separated. If closely-spaced
180° pulses are used, coherent averaging theory may be used to derive an effective Hamiltonian
which is independent of the precise rotation angles,!® so it is more or less irrelevant if composite
pulses are used in this limit anyway. The intermediate regime with pulses spaced by durations
comparable to the inverse of the chemical shift differences produces very complicated dynamics
which are not very informative. All in all, spin—spin relaxation time measurements do not turn out to
be a very favourable field for exploiting composite pulses.

Composite pulses are useful in overcoming problems of resonance offset and r.f. inhomogeneity in
experiments designed to excite multiple-quantum coherence or multiple-spin order, such as
homonuclear and heteronuclear polarization transfer and multiple-quantum filtering methods. In
these techniques the density operator is passed through a series of unitary transformations designed
to drive it into a specific form, and the effect of pulse imperfections is usually cumulative. For
example, in double-quantum filtering of carbon-13 spectra in order to detect selectively low-
abundance '*C-'3C pairs (INADEQUATE®#), the desired signal in the usual method may be
shown to be roughly proportional to {1-5(Q/w{)?}, where it is assumed for simplicity that the two
spins have almost equal offsets Q. In practice, an r.f. field w/2n=12.5 kHz might be available
(corresponding to a 90° pulse length of 20us), so a loss of about half the signal may be predicted for
13C resonances separated by only 8 kHz in resonance frequency, or 100 ppm at 80 MHz, a not
uncommon situation. Such a strong offset-dependence is indeed observed.*® The loss in signal is in
general even more serious for experiments involving higher-order coherences or more pulses.

Experiments like these can be compensated in general only by using composite pulses of type A or
B1, incorporated into the pulse sequence in a careful and consistent way such as to take into account
of supplementary z-rotations, as has been described in Section 4.3. The performance of an
INADEQUATE sequence incorporating composite pulses of type Bl, eqn.(109), is compared with
that of the uncompensated pulse sequence in Fig.19, for the natural abundance !3C-'3C satellite
spectrum of crotonaldehyde, which extends over almost 180 ppm. The 90° pulse length was 18pusec,
an experimentally more realistic value than that used in Ref.(38). The off-resonance compensation is
obvious from the observed spectral intensitites, enhancements of factors of three being observed for
some satellites. It is interesting to observe that a noticeable enhancement in intensity was observed
even when both participating spins were quite close to the carrier; One can therefore honestly
recommend this pulse sequence to be used routinely. (The main peak signals were poorly suppressed
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FIG. 19. Double-quantum filtered !3C-~!3C satellite spectra INADEQUATE spectra) obtained at 7S MHz on a
modified Bruker CXP-300 spectrometer. (a) Crotonaldehyde, (b) conventional **C spectrum (one transient), (c)
and (d) expanded '3C-'3C satellite regions filtered through (+2)-quantum coherence ®#, without and with
compensation for resonance offset effects during the pulses (1024 transients). The main peak signals were poorly
suppressed in both cases for unknown reasons and have been deleted from the spectra shown for the sake of
clarity. For (d) the composite pulse sequence of eqn.(108) with ¢, =0 was used. The r.f. field strength was
w,/2n=13.2 kHz There is a clear enhancement of the satellite signals in (d) which is due to offset compensation.
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in both non-compensated and compensated spectra and have been whited out in the plots shown;
the poor suppression seems to derive from an unidentified stability problem on our instrument and
is not relevant to the compensation issue.)

6. PRACTICAL IMPLEMENTATION

In this Section we discuss how to implement composite pulses in practice, assuming there is an
instrument available equipped with a versatile pulse programmer and an accurate (preferably digital)
phase shifter.

Composite pulses may normally be implemented in the pulse programme by simply chaining
together instructions for pulses of different phase. Experience has shown that it is not necessary to
leave a delay between the pulses to let the phases ‘settle’. Transients will occur anyway whether or
not this is done, and inter-pulse delays will degrade the performance at large resonance offsets.
However it is usually recommended to preset the phase of the carrier to the phase of the first element
in the composite pulse before the transmitter gate is turned on, and to hold the phase to that of the
last element for a few usec after the pulse is turned off. This is especially important if phase-cycling is
done to select particular coherence transfer pathways.”®’ Phase presetting ensures that if the pulse
sequence is shifted in phase, the overall propagator is simply rotated around the z-axis, including
minor transient effects at the beginning and end of the pulse. (This recommendation is valid whether
or not composite pulses are used.) The suppression of unwanted pathways is improved by this
means.

Especially when phase cycling is used, it is highly convenient, but not essential, to be able to place
the composite pulses in a subroutine to which an overall phase can be passed. All the ‘internal’ phases
of the composite pulse can then be calculated with respect to this overall phase. In addition, when
using composite pulses with supplementary z-rotations, the subroutine can keep track of the
accumulating phase rotations making explicit calculation on the lines of eqns.(104)(105)
unneccessary. The pulse programming software available at the ETH in Ziirich allows such facilities.
It incorporates a small compiler written in ASPECT-2000 assembler code and runs on a modified
Bruker CXP-300 spectrometer equipped with a commercial (Interface Technology RSM-232) pulse
programmer and home-built 15° digital phase shifters. Pulse programmes are written in a custom-
built high-level language with similar appearance to the current Varian system, but are more
versatile and are compiled in less than a second. The pulse programmer hardware itself is not
intelligent but fast enough to execute complicated multiple-pulse cycles such as are common in
solids.

It is strongly recommended that an oscilloscope, coupled into the transmitter oytput, is available
for examining the pulse sequences by eye, since some pulse programming systems may introduce
hidden delays, or get confused when many short pulses follow each other in rapid succession. It is
usually possible to check the timing of the phase shifts within a composite pulse by the the brief
‘spikes’ in reflected power.

It is usually best to verify at first the performance of composite pulses in a very simple application.
For example, a composite 180° pulse can be checked by measuring the degree of inversion of
equilibrium z-magnetization. The intensity of the signal is measured after a second 90° ‘read’ pulse
which need not be composite. At least two scans should be combined, the second having the
composite pulse shifted in phase by 180° to remove signals deriving from stray single-quantum
coherence produced by the composite pulse. (This is much more reliable than attempting to defocus
the transverse magnetization by applying a static field gradient.) A composite 180° pulse should give
a distinctly higher intensity of inverted signal than a single 180° pulse. If this is not the case then the
pulse programmer timing or phase shifts may be suspected.

The tempting ‘short-cut’ of assessing a composite 180° pulse by measuring the ‘direct’ signal it
creates when applied to thermal equilibrium magnetization is potentially ambiguous and should be
avoided. One often finds in fact that the composite 180° pulse gives larger residual signals than a
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single 180° pulse. This does not indicate that the compesite pulse does not work but is an illusory
effect deriving from destructive interference. In an inhomogeneous r.f. field, the signal is a sum of
contributions form different parts of the sample. Composite 180° pulses should lead to smaller
intensities of thé individual signal components than a single pulse, but the overall signal also
depends on the relative phases of the signal components. For a single 180, pulse, applied on-
resonance, the y-magnetization is given to first-order in dw, by

U = —(mday /w]). (110)

If the r.f. field distribution is symmetrical around ?, the net signal is zero (this assumes a perfectly
homogeneous static field B, otherwise the r.f. inhomogeneity can be partially refocussed during the
formation of the free induction decay; but even in this case, the integral of the spectral line is zero).
On the other hand, if a composite pulse 90,,180,90;, is applied to z-magnetization, the transverse
magnetization is given to second order by

A+~ —Hnbo, fw)’. (111)

The transverse magnetization always has the same sign, so when averaged over a r.f field
distribution the composite pulse may give a larger net signal than a single pulse. But this is only the
result of fortuitous destructive interference when using the single pulse, and the effect is usually
absent in an actual experiment.

Similar effects exist for composite 90° pulses in inhomogeneous r.f. fields. Thus the net z-
magnetization produced by a single 90° pulse can be set to zero by suitable choice of the pulse
duration, whilst that produced by 90,90,, cannot, although the latter gives smaller individual
contributions. Again, one must decide if such destructive interference effects are present in the actual
experiment which is to be performed.

The more complicated procedures of type A or Bl are also best tried out on some simple
application first, especially to test if the supplementary z-rotations have been correctly taken into
account. Of course for these sequences an intelligent pulse programming software system is a great
asset, and may make the implementation almost invisible.

7. UNORTHODOX APPLICATIONS

It has recently been recognized that the concept of applying a series of non-commuting rotations
to the spin system has applications reaching beyond the compensation of pulse imperfections. Two
of the ‘unorthodox’ applications which have been proposed involve not fighting against
inhomogeneous r.f. fields, but using them in the one case to obtain spatial selectivity of NMR
responses, and in the other case to cause a destructive phase dispersal of unwanted signals whilst
leaving desired signals coherent. Another ‘unorthodox’ application is to extend the concept of
compensating rotations to evolution under Hamiltonians non-linear in the spin angular momentum
operators. All of these applications are still under development and not much detail will be given
here.

7.1. Radio-Frequency Field Selection

The development of surface coils for detection of NMR signals inside large, intact objects, such as
living subjects, has led to problems of achieving spatial selectivity of the NMR responses. Spatial
selectivity may be achieved by applying static field gradients and frequency-selective r.f. pulses,®>
but an attractive, ‘mobile’ solution would be to use the spatial variation of r.f. field produced by the
surface coil itself to select the desired volume. This requires a method of selectively exciting spins
experiencing a particular value of r.f. field, and would ideally be insensitive to the precise resonance
frequency of those spins. Bendall et al® suggested a method involving phase cycling a series of
180° pulses to cut out signals experiencing unwanted r.f. fields. The problem with this method is that
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each individual 180° pulse has only a poor selectivity, so that many 180° pulses must be used, which
must be cycled independently, requiring many experiments. Shaka et al.*3°7°® and Tycko et al*®
independently suggested using composite 180° pulses which have an intrinsic r.f. field selectivity.
This cuts down greatly the number of experiments which must be combined.

Increasing the r.f. field selectivity of a pulse sequence is the exact opposite of r.f. field
compensation and has been termed ‘retrograde’ compensation.'*® The ideal retrograde compensated
180° pulse produces a spin inversion only for w, ~®} and produces a rotation around the z-axis for
other r.f. field values. Just as for compensated 180° pulses, iterative expansion procedures can be
developed to generate retrograde compensated pulses. The above authors both suggested the
retrograde compensation expansion

R(()m+1)=R(i";R(()m)R;m) (1 12)

where ¢=120°. Shaka et al‘*¥ also showed that the same procedure with ¢=90° is useful for
obtaining an initial ‘coarse’ retrograde compensation which can then be followed up with a ‘fine’
adjustment by using ¢= 120°. They recommended the sequence!*?

180018040180, 50180, 361805, 61805001803401803018040. (113)

Consulting Fig.18, this sequence does indeed give good r.f. selectivity close to resonance. But it is
clear that it is highly offset-sensitive. Some suggestions for reducing this problem have been made,
by combining different experiments,®®” and this aspect is undergoing further development.

7.2. Composite z-Pulses

Rotations of the spin density operator by an angle 8° about the z-axis can be achieved by a
composite pulse sequence 90,,,(8°),904,, Where all pulses are assumed ideal®*® For instruments
equipped with phase shifts only in steps of 90°, this proves an attractive way to simulate other
phases, since a rotation of the spin density operator through 8° about the z-axis is equivalent to a
shift in the phase of the reference frame through — g° Thus the effect of an arbitrary phase shift can
be mimicked simply by applying a sequence of pulses with orthogonal phases. Applications to
various experiments in multiple-quantum spectroscopy have been reported.2-109

The advent of versatile and accurate digital phase shifters has caused this application to decrease
in importance, since the rotation produced by a z-pulse is dependent on ideal pulse performance,
whilst a digital phase shifter may be constructed to be almost arbitrarily precise. If necessary, the
outer 90° pulses may be compensated (using sequences of type A or B2), but there is no apparent way
to compensate the central (%), pulse. However this sensitivity of the central pulse to effects such as
r.f. inhomogeneity may be turned to advantage as follows. Suppose the r.f. field is only slightly
inhomogenous, so that the outer 90° pulses may be considered ideal, whilst the central pulse is
deliberately made long so as to amplify the effect of the small r.f. field variations. Then the sandwich
90,,4(8%)¢90,, implements an inhomogeneous z-rotation, in which volume elements in different r.f.
fields are rotated about the z-axis through different angles. If the duration of the central pulse is
made long compared to the inverse of the spread in r.f. fields, an inhomogeneous z-rotation is
generated with a rotation angle so strongly spatially-dependent as to be pseudo-random.

Such a long z-pulse is clearly useless for simulating r.f. phase shifts. However it produces a similar
effect to a static field gradient pulse, except that it does not disturb the field-frequency lock or
produce eddy currents in shim coils or probe housing (although other effects such as sample heating
may be produced). Therefore long composite z-pulses may be used to select coherences according to
their order.*!? Suppose two long z-pulses are applied, of unequal durations t and k7, on either side
of some pulse sequence which mixes coherences of different orders. A coherence |r){s| of order p\"¥
accumulates a phase factor exp( —ip"w,(r)7)) during the first inhomogeneous z-pulse, where w,(r) is
the spatially-dependent r.f. field. For a sufficiently long z-pulse, the coherence defocusses completely.
Now suppose the coherence |r){s| is transferred to a different coherence |m>{n] by the mixing
sequence, and the second inhomogeneous z-pulse applied. The accumulated phase factor for the
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pathway |r>{sl—md<{n| is exp{—i(p"? +xp™")w,(r)r}. Contributions to the signal taking this
pathway are spatially defocussed in phase unless p™= —xp'™), If this condition is satisfied, the
defocussing is exactly reversed and the pathway is spatially coherent. In this case a ‘rotary coherence
transfer echo™*!) is formed, which represents a way of selecting signal components on the basis of
their history of coherence orders, just as in phase cycling, with the difference that ideally only one
experiment has to be performed. Thus the time requirements of various experiments can be reduced,
or alternatively, the method can be combined with phase cycling to yield high suppression ratios of
unwanted signals.

Some experimental results are shown in Fig.20, for double-quantum filtering of spectra from a
mixture of 4, and AX spin systems. Details are given in the caption. The technique basically works,
although an undesirable reduction in the intensity of the AX peaks is produced, since only one of
either (+2) or (—2)quantum coherences can be refocussed simultaneously, whilst in selection of
double-quantum coherence by phase-cycling, both may be retained. Nevertheless the method may be
useful in cases where experimental time would be excessive if full phase-cycling were employed, and
signal-to-noise ratio is sufficient.

b
e

7 6.5 ppm

F1G. 20. Use of inhomogeneous z-pulses for selection of coherence orders. Spectra are of a mixture of proton A,
and AX spin systems, and are scaled to correct for the fact that they were taken with a different number of
transients. (a) Conventional spectrum (one transient) (b} Spectrum obtained by (+2)-quantum excitation,
selection of (£ 2)-quantum coherences by a 4-step phase cycle, and excitation of observable magnetization with a
90° pulse (4 transients). (c) Spectrum obtained by (+2)-quantum excitation, an inhomogeneous z-pulse of
duration 200usec, a 90° pulse, and an inhomogenous z-pulse of duration 400usec (one transient). The pair of z-
pulses filter out (+2)-quantum coherences. (d) Combination of phase cycling and inhomogeneous z-pulses (4
transients). (From Ref. 41.)
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The implementation of unorthodox rotations by composite pulses is not restricted to rota-
tions about the z-axis. For example, Caravatti et al'®" have described sequences such as
35.3,35120,535.35, 5 to induce rotations of the spin system through 120° about the tetrahedral axis
(1,1,1), with applications in solid-state heteronuclear correlation spectroscopy; It is worth pointing
out that the somewhat simpler sequence 904,90, produces the same rotation.

7.3. Composite Bilinear Rotations

By applying pulse sequences which are long enough for spin-spin couplings to operate, it is often
possible to cause the density operator to evolve under an effective Hamiltonian which is bilinear in
the spin angular momentum operators. For example the effective Hamiltonian H
=Y i2n el .,, may be produced by applying a pulse sequence 90,-1/2-180,-1/2-90, to a
weakly-coupled spin system. Such evolution operators are often referred to as ‘bilinear rotations’.
They have been shown to be useful concepts in many experiments such as decoupling,'* °? multiple-
quantum NMR,'®¥ and various forms of two-dimensional correlation spectroscopy.(62-194:199 A
particular useful bilinear rotation is used in experiments on dilute heteronuclear spin systems, where
the following pulse sequence on abundant spins I and dilute spins § leads to evolution under the
effective Hamiltonian H =Y ,nJ21,,S,, where J, are heteronuclear couplings between the S spin
and the neighbouring I-spins:

I: 904-1/2-1804-1/2-90,
S: 180, (114)

(An additional 180° rotation of the S-spins also results, but this is usually immaterial.) Because there
is a large difference in the magnitude of one-bond IS scalar couplings and longer-range couplings,
this sequence allows selective manipulation of I-spins directly bonded to an S-spin, and has been put
to a large number of ingenious purposes.!02:104-108

Difficulties with the bilinear rotation arise if the duration t of the sequence is not matched to the
one-bond couplings J,. (Usually, t should be 1/J,). This might be impossible to achieve if there is a
range of one-bond couplings, and leads to a sort of ‘inhomogeneity’ in the bilinear rotations, the
‘inhomogeneity’ in this case not being spatial but from spin system to spin system. Similar methods
as used to correct r.f. field variations in ordinary pulses can sometimes be extended to the bilinear
case. For example, Garbow et al.* °? suggested the sequence

I 904-1/2-1809,—7/2-90,4-7-18040 7905 5—1/2—1806 5~ 7/2-90,
S: 180, 180, 180, (115)

which provides a bilinear rotation exp{—in,2I,.S,} relatively insensitive to variations in the
coupling constants, by analogy with the composite pulse 90,1804,90,. Wimperis et al.*°® have
taken these compensation schemes further and developed bilinear rotation equivalents of the 121
and 1331 ‘solvent suppression’ sequences, 27 3+10%:110) a5 well as bilinear selective excitation
sequences which produce appreciable signal only for I-spins directly bonded to an S-spin.(16~10®

Despite these fair successes, analogies between bilinear rotations and normal rotations must be
drawn with care. In general the evolution of many-spin systems over periods long compared to the
couplings occurs in spaces of much higher dimension than the three-dimensional spaces assumed for
composite pulses and selective excitation sequences. In the heteronuclear examples given above, the
analogies work fairly well because the large magnitude of one-bond IS couplings allows the much
weaker II couplings to be ignored so that the evolution of the system may be restricted to a set of
independent three-dimensional spaces {2I,,S,, 21,,S;, I, } for each spin I,. In homonuclear spin
systems, this simplification is not feasible, and compensated bilinear rotations cannot be created by
known methods. 7

The compensated multiple-quantum rotations suggested recently by Barbara et al.!!! are closely
related to compensated bilinear rotations but as they seem most likely to be applicable to the NMR
of spins I =1, they will be discussed in the following Section. In addition we should mention J-cross
polarization sequences which may also be compensated for coupling variations by forming
analogies with conventional composite pulses.’ 2"

JPNMRS 18/2-D
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7.4. Virtual Composite Pulses

Sometimes composite pulses are useful in thinking about the way an experiment works as well as
for improving its performance. This is often the case when a sequence contains a pulse with a
nominal rotation angle not equal to 90° or 180°. It is frequently enlightening to consider such a
pulse, for example (8%, as a ‘virtual composite pulse’ such as 90,[(5°),]90, g0 When the sequence is
looked at this way its operation may become easier to visualize. A good example is the DEPT
sequence for polarization transfer from I-spins to S-spins."*!? The usual pulse sequence involves a
(8%0 pulse applied to the I-spins; the particular functional dependencies of the transferred
polarization on the flip angle of this pulse depend on the type of spin system and can be used to
achieve ‘subspectral editing’ of IS, I,S and IS systems. However this is a purely mathematical
argument and yields little physical insight. It is more revealing to substitute for the (8%, pulse a
virtual composite pulse. It is then found 9% that the first 90° pulse of the sandwich creates multiple-
quantum coherence amongst the I-spins, of orders (+ 1) for IS systems, (+2) for I,S systems, and
both (+1) and (4 3) for I,S systems. The variation of the pulse flip angle in the usual DEPT
technique corresponds to a variation of the [(8°),] rotation, i.e. phase cycling in the usual way to
distinguish between the different orders of I spin coherence created in the different spin systems. The
final 90° pulse in the sandwich transfers this multiple-quantum coherence (partially) into observable
S-spin magnetization. The functional dependencies are fully explained and it is seen how this pulse
sequence relates to other techniques such as multiple-quantum filtered spectroscopy.®¥ It is also
apparent that non-idealities may cause “breakthrough” of systems with a larger number of I-spins
into the subspectra of those with a smaller number, but not the other way around, since multiple-
quantum orders of magnitude p can only be sustained in systems of larger than, or equal to, p spins-
1/2.

In fact it usually turns out of advantage to actually do the experiment this way as well as just think
about it.(38:113 The experiment is then closely related to compensation schemes involving sequences
of type B1 discussed above, and displays reduced sensitivity to pulse errors. Of course the expansion
of a pulse into a sequence of two pulses sandwiching a phase shift is the basis of the construction of
many composite pulses as discussed in Section 3.

7.5. Composite Pulses in other Spectroscopies

Composite pulses may also be used in other forms of coherent spectroscopy providing the
technology exists for producing pulses of controllable relative phases, and assuming that relaxation
times are not prohibitively short. A natural candidate is pulsed electron spin resonance, where the
problem of large spectral widths compared to currently available pulsed microwave intensities
exists. Unfortunately if the width of the spectrum is caused in this case by hyperfine couplings or g-
tensor anisotropies, no composite pulse is yet known for improving the bandwidth of the excitation;
the problem is analogous to increasing the bandwidth of a single 90° pulse in a single nuclear spin-
1/2 system, which has not been achieved beyond the rough limit Q=~w?. But it might be possible to
enhance excitation bandwidths for the pulsed ESR of triplet states, where the spin dynamics are
similar to spins I = 1. No applications have been reported however, to the knowledge of the author.

Composite pulse techniques may be transferred in some cases to coherent optical spectro-
scopy.(74~79 This has been made possible by the recent introduction of acousto-optic modulation
technology for the generation of phase-shifted coherent laser pulses.”® The method involves
deflection of a laser beam by an r.f acoustic wave induced in a suitable crystal; the phase
information of the r.f. pulses is transferred completely to the diffracted optical beam. Of course
coherent optical spectroscopy encounters quite different problems form NMR so the interesting
pulse sequences are also different. In optical systems one is usually in a situation of ‘extreme
inhomogeneous broadening’ in which the linewidths are much larger than the electric—dipole-laser
interaction. These very broad lines cannot be excited uniformly, as is a realistic goal in NMR and
one often hopes to maximize instead the integrated excitation over the line, without concerning
oneself with the detailed structure within the line. Warren has investigated closely the properties of
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phase-modulated sequences such as (8,8 s0)", Where n is large, and predicted by computer simulation
an enhancement of the population inversion in a 2-level system,!”® which could also be verified
experimentally. A similar effect was predicted in enhancement of the population inversion across the
forbidden transition in optical 3-level systems.”®

At present the application of composite pulses, and shaped pulses, in coherent optics is still
somewhat restricted in real applications by the power-handling capabilities of the acousto-optic
modulation devices. Technological innovations in this area are to be expected.

8. COMPOSITE PULSES IN SOLIDS AND LIQUID CRYSTALS

NMR in anisotropic media encounters special problems. The spectra are dominated by large
anisotropic interactions such as chemical shifts, quadrupolar splittings (for I>1) and dipolar
spin-spin couplings.*'¥ The considerable size of these terms relative to the strength of the
interaction of the spins with feasible r.f. fields is the principle cause of imperfect pulse performance.
In this Section we discuss how composite pulses can help overcome this problem in favourable cases.

In high magnetic field all interactions may be factored into a spatial part multiplied by a spin
part. Heteronuclear dipolar couplings and anisotropic chemical shift teirms transform in the spin
part as first-rank tensors (vectors), so that in cases where other interactions may be ignored, the
techniques described in the earlier Sections may be applied. Offset-compensated composite pulses of
types A, B1, B2 and B3 may all be used in the usual way.

We are more concerned here with cases where the dominant interactions transform in the spin
part as second-rank tensors, and the first-rank terms like chemical-shift or heteronuclear coupling
terms may be ignored over the duration of the pulse. When second-rank dipolar spin-spin couplings
or quadrupolar interactions are the predominant cause of imperfect pulse performance, the theory
developed above for vector interactions is inapplicable, and different sorts of composite pulse must
be found.

There seem to be two distinct approaches to this problem. The first method is the most general. It
sets out with the ambitious goal of compensating the effect of spectral broadening during the pulse,
using only the fact that the interactions are second-rank in the spin variables, and not using any
other knowledge of the system, such as the number of energy levels, etc. The second method, on the
other hand, concentrates on one particular type of system, in the cases to be discussed a three-level
system with unequal spacing, such as is found for spins I=1 in an anisotropic environment or for
isolated pairs of dipolar-coupled spins-1/2. The only parameter which is left free is then the size of
the quadrupolar or dipolar interaction. The advantage of the first method is that, if successful, it
would allow construction of composite pulses which may be used in a wide variety of systems. The
second method is based on the expectation that by using as much information as possible, more
compact and effective composite pulses can be built up.

8.1. Coherent Averaging Method

Coherent averaging theory is a suitable framework for designing a composite pulse based only on
the second-rank transformation properties of the spin interactions and without any other
assumption. The theory is the same as in Section 3.2. with the difference that the perturbation H,p,.;
is proportional to T, the M =0 component of a second-rank tensor.**’ Upon rotations, T,, mixes
with the four other second-rank tensor components T,,, and T,, ,, with mixing coefficients given
by the elements of the appropriate Wigner rotation matrix. The task of designing a composite pulse
reduces to finding a set of rotations which are equivalent to the chosen ideal rotation, and such that
the time average of the Wigner matrix elements in the interaction frame vanishes, H®=0.

le problem is closely related to disigning a multiple-pulse dipolar line-narrowing sequence,*?
where H'? for second-rank interactions should also be zero. However the ideal rotation in that case
is also usually zero (the sequence is cyclic) and there is an additional constraint, that the time-
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average of the interaction frame first-rank interactions does not vanish (finite ‘scaling factor’). Many
sequences with this property have been proposed,-'® but the ones of most relevance here are the
‘windowless’ cycles of Burum et al.*'® (‘windowless’ means no gaps between the pulses). Burum et al.
showed that the time-average of interaction-frame second-rank tensors vanishes for particular
sequences of six 90° pulses, amongst others

9041805090, 551800, (116)

The ideal propagator for this sequence is 180y, so this sequence already represents a composite 180°
pulse compensated to zeroth-order for second-rank interactions. Burum ez al.! 1 did not realize this
possible application, however, and proceeded instead by “symmetrizing” the sequence (placing it
next to its inverse, as defined in Section 3.4), and using the whole thing (now a cycle, called BLEW-
12) for line-narrowing purposes.

Tycko et al*® have recognized the potential of such sequences for broadband population
inversion in systems with second-rank interactions. They recommend the sequence

4501804090, 501805045, (117)

as a composite 180° pulse in solids. It is perhaps easiest to see that this also has H'® = 0 by noting
that it may be derived from (116} by permuting a 45, pulse; It may be shown that if a sequence has a
vanishing average Hamiltonian, this will remain true if an element is permuted which commutes
with the overall propagator, which is the case here. Tycko et al.(45) performed computer simulations
and experiments on systems with small numbers of dipolar-coupled spins and could verify the
improved population inversion. However the hopes for universality of such sequences were only
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FiG. 21. Numerical simulations of {I,>* for spin I=1 as a function of quadrupolar splitting wg/2w, for the

sequences (a) 180,, (b) 9001805490, 5018050 119 (c) 4541806590, 401806445,,4% (d) 45,90, 501354450490;70
1354545490, 50135,
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partially satisfied. The enhancement of the spin inversion as against a single pulse, as predicted by
numerical simulation, was strongly dependent on the configuration of the couplings between the
spins. Also experimental results for squaric acid, which contains large numbers of coupled spins,
were only presented for very low r.f. fields of 20 kHz, although r.f. fields exceeding 80 kHz are easily
available. The variability in the performance of such sequences arises because of slow convergence of
the Magnus expansion in realistic cases. In principle, some of the higher terms may be eliminated by
using longer pulse sequences, but no such sequence has yet been suggested for arbitrary second-rank
interactions. (The technique of ‘symmetrization’, mentioned above, may be used for cyclic sequences
to eliminate all odd terms H™19, but no such possibility is yet known for non-cyclic composite
pulses.) ’
Nevertheless, 45,1804¢90, 5,180,445, is a useful composite 180° pulse for isolated spins I=1 or
small numbers of coupled spins-1/2. In Fig.21, computer simulations of {I,>* for a single spin-1
system are shown for this sequence as well as for a single 180° pulse and the BLEW-6 sequence
90,1804390,5,180,+¢. These simulations were produced using a numerical diagonalization of the
Hamiltonian in the presence of the r.f. field. The bandwidth of the inversion for the composite pulses
is clearly greater than for a single 180° pulse. Also shown in this diagram is the performance of the
sequence 45,90, 40135¢455090,701355045,90,50135, to be described below. Experimental results
obtained with the deuterium (spin 1) solid-state spectra of polycrystalline d*-phenylalanine are
shown in Fig.22. These were obtained by measuring the z-magnetization immediately after a
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FiG. 22. Experimental ?D lineshapes of d*-phenylalanine, obtained at 46 MHz by composite pulse echoes
preceded by a composite 180° pulse, with 4-step phase cycling to select the longitudinal component after the 180°
pulse. The full width of the line is 130 kHz, the r.f. field was w/27=59.5 kHz. (a) No inversion pulse, (b) after
180,, (c) after 90,1805090,501805, (d) after 45,1805090,40180,445,, (€) after 45090,50135,45909027013540

45,90, 4,135, The ‘horns’ in (d) and (e) are possibly the result of molecular motion on the timescale of the
inversion pulse.
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(composite) 180° pulse by using the quadrupolar echo sequence 45,90, 50135-7;45609037013500-7,
(next Section). The 180° pulse was cycled through four orthogonal phases with signals added so as to
suppress single or double quantum coherence unintentionally created by the inversion pulse. The
single 180° pulse clearly achieves good inversion only for those crystallites in such orientations that
the quadrupolar tensor is small This seriously interferes with spin-lattice relaxation time
measurements, especially when the spectral variation of 7; is of interest.!!® The increased
bandwidth of the composite pulses is obvious from the improved appearance of the inverted spectral
line shapes. The spectra shown were obtained with a moderate r.f. field strength of w,/2n=54.3 kHz
(corresponding to a 90° pulse of duration 4.6usec).

Tycko has also suggested the sequence 45,135,4,1355445,40 as a composite 90° pulse in systems
with second-rank interactions.*¥ However this sequence seems to suffer particularly badly from the
slow convergence of the Magnus expansion and its performance is disappointing.

8.2. Consecutive Rotation Method

Systems of isolated pairs of equivalent dipolar coupled spins-1/2, or isolated spin I=1 systems,
are simple enough that the dynamics during a pulse or arbitrary frequency or field strength may be
solved analytically.!!6~121 In the following we refer only to the spin /=1 problem, but all
conclusions also apply to spin-1/2 pairs if the words ‘quadrupolar interaction’ are replaced by
‘dipolar interaction’. In these systems there are three relevant eigenstates which are in general
unequally spaced. The difference between the spacing between states |1) and |2) from that between
states |2) and |3) is given by the quadrupolar interaction 2aq. This ‘anharmonicity” varies according
to the orientation of the tensor with respect to the static magnetic field, giving rise to the well-known
‘powder lineshapes’ for non-oriented samples.

Imperfect pulse performance arises because the r.f. field cannot be on resonance for both single-
quantum transitions simultaneously, unless the quadrupolar splitting is very small. However it is
usually possible to apply the irradiation very close to the mean frequency of the two transitions,
which is only affected by relatively small second-order quadrupolar and chemical shift interactions.
The system is then discribed by a single unknown, the quadrupolar splitting.

The Hamiltonian in the presence of an r.f. field of phase ¢ is given by

H;=Hq+wexp(—ipl,)l expli¢l,) (118)
where the first-order quadrupolar interaction is given by
Ho=woi(L* -1 +1) (119)

The non-commutation of the two terms in eqn.(118) is the cause of the trouble.
It is convenient to express all interactions in terms of the single-transition operators,(!20:#21)
defined by

B9 =4(r){rl = 1s)<sl)
IF =H(rd{sl+1s><rl)

19 =4r><sl = Is)<r) (120
which have cyclic commutation relationships, for example
[I99, 109] = i I¢™ (121)
and
CI9, 18] = i IV, (122)

It is also convenient to introduce quadrupole polarization operators‘®® Q9 defined by

QU = (10D 4 147) (123)
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with properties
[0 1]=0,  v=xyz
0=0M: O+ O+ QI =0;

Q=1 —401; I =H(Q4 -~ )
(124)

Then we may write

Ix =21/2(I§‘12)+I§23))

Iy =21/2(1(yl 2)+I(23))

I, =23 ’
and

The Hamiltonian may be put in a more tractable form by expressing all operators in the ‘U{'®
frame’ defined by the transformation

n n
A7=exp(i2~1‘y”)) A exp(—iz—l‘y”’). (125)

By using eqns (121) and (122), the operators I,, I, and I, become in this frame I,7=21,1",
1T=212% and IT= -21,"%. The quadrupole term Q{'® is unchanged. The Hamiltonians during
pulses of phase ¢ =0, 90°, 180° and 270" are:

Hy o =@l +20,1¢¥) ool
HT o =(—l®+ 20, 1) — d0Qi?¥
HD_ gy =(@ol{'®—20,1¢ %)~ ugQl!?
HT 0 = (0ol =20 ) ~dug0i™.

(126)

Suppose we wish to design a composite 90° pulse. In the U frame, this implies we wish to be able
to take the spin system from an initial condition I7= —2I{!¥ to a final state —I,7= —2I3.
Neglecting the unimportant change of subscript, this implies an interchange of states |1) and |2) in
this frame. Now from eqn.(126), a pulse of phase ¢ =0 or ¢ = 180° acts as an effective rotation on the
|l Y2 transition in the U{'? frame; to interchange states |1) and [2), we require a 180° pulse in
this space; this leads to the surprising corollary that a composite 90° pulse in a three-level system has
more in common with a 180° spin-1/2 pulse than with a 90° spin-1/2 pulse. If these suspicions are
taken to their logical conclusion it may be shown®® that a 180° pulse for spins-1/2 may be
converted to a 90° pulse for spins-1 simply by dividing all pulse lengths by two, if the following
conditions are met:

(a) only 180° phase shifts are involved;

(b) if the 180° pulse is of type B, then the phase of the overall rotation operator must be linearly
dependent on offset.

The pulse lengths should be divided by two because of the factor 2 in the term proportional to w,
in eqn.(126). Condition (a) is also a consequence of eqns(126), which show that pulses of phases other
than 0 and 180° do not provide the necessary pure rotations in the |1 >«2) space. Condition (b)
arises because a linear offset-dependent phase shift of the spin-1/2 180° composite pulse is converted
into an apparent time shift of the free induction decay after the spin-1 90° composite pulse. For
powder spectra, it is essential to ensure that the time shift is uniform so that all signal components
echo simultaneously (see below).

Both conditions are met to a fair approximation by the two spin-1/2 180° composite pulses
encountered earlier, 90,180,40270, and 90,270, 5,180,360, 40180,. These are both broadband 180°
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pulses and the last also gives a nicely linear dependence of the phase on offset, with a propagator
given to a good approximation by

Q Q
exp( —i—/ Jexp(— ind Jexpli—;1.). (127)
@y Wy

For the shorter sequence however, the phase-dependence shows appreciable deviations from
linearity. This is of consequence when fine details of the quadrupolar lineshapes are of interest (see
below).

With pulse lengths divided by two, these sequences have propagators given in the U'® frame
approximately by

UT ~exp(—i60,0 MNexp( —i0,0(?>)exp( — inI1 ?) (128)
where
0, =HwoT+wy/w,)
and
0, =HwoT—wy/w,) (129)

Here T'is the total duration of the composite pulse. In eqn.(128), the rightmost operator induces the
necessary interchange of states |1) and |2), the operator exp(—if,0!*®) commutes with the final
condition I7, whilst the leftmost operator exp(—i6,0' ¥} is responsible for the time-shift alluded to
above. Thus sequences such as 45,90, 5,135, and 45,135, 4,90,180, 5,90, give broadband excitation
of coherence in spin-1 systems.®

They may also be incorporated into quadrupole echo sequences'*?? which are widely used in
solid-state deuterium NMR to make accessible the first few points of the free-induction transient.
Two composite pulses are applied with a phase difference of 90° separated by a time z,; the echo
occurs at time 7, given by, assuming eqn.(129) is valid,

1,=7,+ T2+ 1/Qw,) (130)

Composite pulse echoes are a particularly important technique because the use of two 90° pulses
seriously aggravates the effect of insufficient r.f. field when single 90° pulses are used; the previous
solutions to this problem were to use pulses much shorter than 90°, or to multiply the spectrum by a
frequency-dependent correction factor which may be calculated analytically. The first of these
methods leads to a large loss in signal intensity, and the second is only feasible when the distortions
are relatively small. Composite pulses allow work with much lower r.f. fields than currently used,
with large advantages in instrumental stability and much smaller heating effects.

The performance of composite pulse echo sequences has been studied by computer simulation and
by experiment; the conclusions outlined above have been generally vindicated. Figure 23 shows
simulated intensities of y-magnetization at times given by eqn.(130) for the two composite pulse
sequences, and at the theoretical echo maximum given by 1, =1, + T/2'® for a conventional two-
pulse echo 90,—7,-9044~7,. The dependence of magnetization on the size of the quadrupole is clearly
much reduced. In Fig.24 are shown some typical experimental results for d>-phenylalanine, with a
fairly low r.f. field corresponding to a 90° pulse length of 6.2usec. Here the echo sequence
45,90, 501350-7,—455090,4013545, was used.

Broadband population inversions of spins-1 can also be created by this type of pulse sequence by
placing together three composite pulses, of phases 090 and 0. For example the sequence
4509018013504590902701359045090180135{) performs quite well in comparison with the sequences
derived by coherent averaging theory, as has been demonstrated above. The propagator for such
sequences may be written

UT >~ exp( ~10,0{ Mexp( — 16,0 )exp( — inl ! ?)
x exp( — 6,0 ¥)exp( — 16,0 P)exp( — inl ()
x exp( —i6,08 P)exp( — 6,02 )exp( — i} ?) (131)
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FIG. 23. Simulations of the y-magnetization <I,>* for spin 1 as a function of the quadrupolar splitting for the

quadrupolar echo sequences (a) 90, —7; =909 — 7,5 T, =17, + /(4w ). (b) 45490540135, —1, ——4599901701350 —13;

T,=1, + (37 +2)/(4w;). (€) 900180, 50905135,50450 — 71 ~900018027¢90901352704590 — 723 T3 =71 + (67 +2)/(4w,).
(From Ref. 39.)

AN
N

130 kHz

FIG. 24. Experimental spectral lineshapes for d°-phenylalanine after the quadrupolar echo sequences (a)
900-1,-9055—75. (b) 45090, 401350—7;-454490,7013594~7,. The r.f. field strength was w,/2n=40.3 kHz.
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which may be rearranged as

UT xexp { (6, + 0,0 ¥ + 0 + 04! )}
x exp(— inl{ P)exp( — inl\Mexp( — inl{! ?) (132)

by using such properties as
exp( —inl¢™)QL = Qi exp( — inl{) (133)

Now the first term in eqn. (132) is unity through eqn. (124), and the last three terms, on
transformation into the laboratory frame become

n n n
U=~exp(— zilx)exp( - zz—Iy)exp( - zEIx)
1 n
=exp(— iZIz)exp( - inl,)exp(i;],). (134)

This is a 180° rotation with a phase of 45°. It is likely that more compact inversion pulses for spins
I=1 can also be produced using the same formulation, but none have so far been discovered.

There are a number of subtleties when applying all of these pulse sequences to systems of practical
interest. Firstly, transient effects arising when suddenly turning on the pulse or switching its phase in
the tuned resonance circuit were neglected, as was the finite bandwidth of the probe when observing
the NMR signal. Both of these effects are significant for very wide quadrupolar spectra. Secondly,
the above treatment assumed a quadrupolar tensor which is static on the time-scale of the pulse
sequence, which is valid in the very fast or very slow motion regimes. But if motion on an
intermediate time scale is present, the effect of the composite pulse is not as simple as presented here
and must be analyzed by more sophisticated methods. Strange lineshape distortions due to motional
effects have indeed been observed when using composite pulses.! 3 Thirdly, Olejniczak et al.!?¥
have pointed out that quadrupolar echoes using the pulse sequence 45,90,4,135, can produce
slightly distorted lineshapes even in the absence of motion, which is because the phase shift term in
eqn.(127) is not closely linear for this sequence, so that different echo components may refocus at
slightly different times. The distortions are however almost absent if 45,135, 4,904,180, 3,90, is used.

8.3. Double-Quantum Excitation

Another manipulation often performed on spins I =1 in solids, other than inversion of population
and excitation of single-quantum coherence, is excitation of coherence between the two extreme
eigenstates |1> and [3). In high field, double-quantum coherence does not provide a macroscopic
magnetic dipole moment and cannot be observed directly, but its precession may be made visible by
transfer to single-quantum coherence by a suitable pulse sequence and employing a variant of two-
dimensional spectroscopy.” Double-quantum coherence of spins I=1 is insensitive to the first-
order quadrupolar interaction and hence can allow measurement of chemical shift tensors which are
normally buried under this much larger term.!?# In combination with magic-angle spinning,
deuterium double-quantum coherence can provide liquid-like isotropic shift spectra from solid
samples in favourable cases.!?* 7

Double-quantum coherence is most often excited by a simple pair of strong 90° pulses. (A centrally
placed 180° pulse can also be included to remove dependence on chemical shifts.) The efficiency of
excitation is given by sin(wqt), where t is the separation of the pulses, and if a third pulse is applied
and the echo taken at a further time 7, the intensity of the signal is proportional to sin*(wq),
assuming uniform spin—spin relaxation times. If the first two pulses are separated by a time longer
than the inverse of the powder linewidth, so that the inhomogeneously damped free induction
response produced by the first pulse has vanished when the second is applied, the fast oscillating
contributions may be ignored, giving an uniform intensity of 1/2 for the double-quantum transferred
signal, independent of wq This condition may be referred to as ‘uniform double-quantum
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excitation’, and is desirable because only under these conditions can the chemical shift tensor be
easily extracted from the double-quantum spectrum.

There are a number of problems with this method, however. Firstly, waiting a long time before the
second pulse is applied results in an appreciable loss of signal. Any sharp singularities in the
spectrum extend the free induction decay considerably but must be allowed to decay. Secondly, in
cases with motion the transverse relaxation times vary across the spectrum and agsain cause non-
uniform double-quantum intensities. Thirdly, if the pulse power is limited, the outer edges of the
spectrum are poorly excited (this can of course be overcome by using composite pulses of the type
discussed above). These problems have stimulated attempts to find different ways of exciting double-
quantum coherence uniformly.

A suggestion has been made by Barbara et al'!'V They noted that if the pulses are strong with
respect to the quadrupole interaction, the sequence 904 ,~7/2~180,,4~1/2-90,, has a propagator

U = exp( — iwgrl{! 3’)exp(—ic;—QrQ‘,l3)). (135)

The term on the left is a rotation in the double-quantum space through an angle wqt and the term on
the right commutes with it. The sequence can therefore be compensated for the effects of variation in
wq by methods analogous to compensation of r.f. field variations in spin-1/2 pulses. A difference is
that phase shifts of ¢ in ordinary space are experienced as 2¢ in double-quantum space, so all pulse
phases must be divided by two if the compensation effect is to be retained (this is reminiscent of, but
not the same as, the division of all pulse lengths by two in the previous section). For example the A-
type composite 90° pulse 270,360, ¢, 18033180, ;5 suggested by Tycko“® can be converted, with a bit
of jiggery-pokery, into the quadrupole-compensated double-quantum excitation sequence'*' ")

904-37/2-180, 3o-37/2-95.505—27~180,-27-112¢ ¢~1-180, 5 ~1-107.594~1-1804-1-90, 5. (136)

The sequence was tried out in the oriented spin-1/2 pair of CH,Cl, dissolved in a liquid crystal and
some increased insensitivity to the magnitude of the coupling could be demonstrated (in fact, the
effect of the magnitude of the dipolar coupling was simulated by changing the value of the delays
between pulses). However, there are good reasons to believe such sequences will not behave very well
in cases of practical importance: (a) their duration is very long, so a loss of signal possibly even
greater than with the two pulse sequence is to be expected through transverse relaxation; (b)
compensation is to be expected only if the transverse relaxation times are uniform; and (c) the
‘bandwidth’ achieved is slightly greater than with just two pulses, but appears insufficient to make
measurement of undistorted chemical shift tensors feasible. Nevertheless, the principle is interesting,
and some of the other directions suggested, such as compensated double-quantum excitation by long
single pulses applied near the mean frequency of the single-quantum transitions''” or by
modulated pulses,’® or compensated double-quantum excitation in two-spin systems in isotropic
liquids, might be more practical.

8.4. Quadrupolar Order

We should also mention the excitation of quadrupolar order Q{'¥ in spin I =1 systems, which is
important in measurement of slow molecular motions.*2® The usual excitation sequence is
90,-1-4540, With a subsequent 45, pulse for observation of the quadrupolar order (Jeener-Broekaert
sequence.’®¥) The 45° pulses are rather insensitive to the quadrupolar interaction and need not be
compensated!® (They behave analoguously to 90° pulses in spin-1/2 systems.) The excitation may
however be improved by replacing the first 90, pulse by a composite sequence such as
450135, 5900180, 50905
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9. CONCLUDING REMARKS

The subject of composite pulses has many facets. They may be viewed as a purely technical device
to achieve improved pulse performance; their value may be assessed more as a stimulation to think
more deeply about the operation of particular NMR experiments (decoupling is a good example);
they have also provoked interest as an abstract exercise in non-linear dynamics, in a system which is
experimentally well-defined, simple enough for exhaustive numerical calculation, and yet complex
enough to provide surprises and challenging unsolved problems. The number of different ways of
producing composite pulses which have been advocated, and the conflicting interpretations which
have appeared in the literature, often bordering on controversy, are evidence enough of that. And yet
composite pulses are very easy to treat compared with continuous modulation techniques, the theory
of which is still in its infancy.
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