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Quantum computing promises to offer substantial speed-ups over its classical
counterpart for certain problems. However, the greatestimpediment to realizing its
full potential is noise that is inherent to these systems. The widely accepted solution
to this challenge is the implementation of fault-tolerant quantum circuits, which s
out of reach for current processors. Here we report experiments on a noisy 127-qubit
processor and demonstrate the measurement of accurate expectation values for
circuit volumes at a scale beyond brute-force classical computation. We argue that this
represents evidence for the utility of quantum computingin a pre-fault-tolerant era.
These experimental results are enabled by advances in the coherence and calibration
of asuperconducting processor at this scale and the ability to characterize'and
controllably manipulate noise across such alarge device. We establish the accuracy

of the measured expectation values by comparing them with the output of exactly
verifiable circuits. In the regime of strong entanglement, the quantum computer
provides correct results for which leading classical approximations such as pure-state-
based 1D (matrix product states, MPS) and 2D (isometric tensor network states,
isoTNS) tensor network methods?® break down. These experiments demonstrate a
foundational tool for the realization of near-term quantum applications*”.

Itis almost universally accepted that advanced quantum algorithms
suchas factoring® or phase estimation’ will require quantumerror cor-
rection. However, itis acutely debated whether processors available at
present can be made sufficiently reliable to run other, shorter-depth
quantum circuits at a scale that could provide an advantage for prac-
tical problems. At this point, the conventional expectation is that the
implementation of even simple quantum circuits with the potential
to exceed classical capabilities will have to wait until more advanced,
fault-tolerant processors arrive. Despite the tremendous progress
of quantum hardware in recent years, simple fidelity bounds® sup-
port this bleak forecast; one estimates that a quantum circuit 100
qubits wide by 100 gate-layers deep executed with 0.1% gate error
yields a state fidelity less than 5 x10™*. Nonetheless, the question
remains whether properties of the ideal state can be accessed even
withsuchlow fidelities. The error-mitigation®® approach to near-term
quantum advantage on noisy devices exactly addresses this ques-
tion, that is, that one can produce accurate expectation values from
several different runs of the noisy quantum circuit using classical
post-processing.

Quantum advantage can be approached intwo steps: first, by dem-
onstrating the ability of existing devices to perform accurate computa-
tions at a scale that lies beyond brute-force classical simulation, and
second by finding problems with associated quantum circuits that
derive an advantage from these devices. Here we focus on taking the

first step and do notaim toimplement quantum circuits for problems
with proven speed-ups.

We use a superconducting quantum processor with 127 qubits to
run quantum circuits with up to 60 layers of two-qubit gates, a total of
2,880 CNOT gates. General quantum circuits of this size lie beyond what
is feasible with brute-force classical methods. We thus first focus on
specific test cases of the circuits permitting exact classical verification
of the measured expectation values. We then turn to circuit regimes
and observables in which classical simulation becomes challenging
and compare with results from state-of-the-art approximate classical
methods.

Our benchmark circuit is the Trotterized time evolution of a 2D
transverse-field Ising model, sharing the topology of the qubit proces-
sor (Fig.1a). The Isingmodel appears extensively across several areasin
physics and has found creative extensions in recent simulations explor-
ing quantum many-body phenomena, such as time crystals'"?, quan-
tumscars™and Majorana edge modes™. As a test of utility of quantum
computation, however, the time evolution of the 2D transverse-field
Ising modelis most relevantin the limit of large entanglement growth
inwhich scalable classical approximations struggle.

In particular, we consider time dynamics of the Hamiltonian,
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Fig.1|Noise characterization and scaling for 127-qubit Trotterized
time-evolution circuits.a, Each Trotter step of the Ising simulationincludes
single-qubit Xand two-qubit ZZrotations. Random Pauligates are inserted to
twirl (spirals) and controllably scale the noise of each CNOT layer. The dagger
indicates conjugation by theideal layer.b, Three depth-1layers of CNOT gates
suffice torealize interactions between all neighbour pairs onibm_kyiv.

inwhich/> 0 is the coupling of nearest-neighbour spins with i <jand
histheglobal transverse field. Spin dynamics from aninitial state can
be simulated by means of first-order Trotter decomposition of the
time-evolution operator,
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inwhich the evolution time Tis discretized into 7/6t Trotter steps and
RZiZj(Bj)and in(eh)areZZand Xrotationgates, respectively. We are not
concerned with the model error owing to Trotterization and thus take
the Trotterized circuit asideal for any classical comparison. For exper-
imental simplicity, we focus on the case 6,=-2/6t = -1i/2 such that the
ZZrotationrequires only one CNOT,

3

Rzz(5) | =

N

where the equality holds up to a global phase. In the resulting circuit
(Fig.1a), each Trotter step amounts to alayer of single-qubit rotations,
R\(6,), followed by commuting layers of parallelized two-qubit rota-
tions, R,,(6)).

For the experimental implementation, we primarily used the IBM
Eagle processoribm_kyiv, composed of 127 fixed-frequency transmon
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¢, Characterization experiments efficiently learn the local Paulierror ratesA;;
(colour scales) comprising the overall Pauli channel A,associated with the /th
twirled CNOT layer. (Figure expanded in Supplementary Information IV.A).

d, Paulierrorsinserted at proportional rates can be used to either cancel (PEC)
oramplify (ZNE) the intrinsic noise.

qubits® with heavy-hex connectivity and median T, and T, times of
288 ps and 127 ps, respectively. These coherence times are unprec-
edented for superconducting processors of this scale and allow the
circuitdepthsaccessedin this work. The two-qubit CNOT gates between
neighbours are realized by calibrating the cross-resonance interac-
tion'. As each qubit has at most three neighbours, all ZZinteractions
can be performed in three layers of parallelized CNOT gates (Fig. 1b).
The CNOT gates within eachlayer are calibrated for optimal simultane-
ous operation (see Methods for more details).

We now see that these hardware performance improvements enable
even larger problemsto be successfully executed with error mitigation,
in comparison with recent work*” on this platform. Probabilistic error
cancellation (PEC)® has been shown’ to be very effective at providing
unbiased estimates of observables. In PEC, arepresentative noise model
is learned and effectively inverted by sampling from a distribution of
noisy circuits related to the learned model. Yet, for the current error
rates on our device, the sampling overhead for the circuit volumes
consideredin thiswork remains restrictive, as discussed further below.

We therefore turn to zero-noise extrapolation (ZNE)*°"*8 which
provides abiased estimator at a potentially much lower sampling cost.
ZNE is either a polynomial®® or exponential® extrapolation method
for noisy expectation values as a function of a noise parameter. This
requires the controlled amplification of the intrinsic hardware noise
by a known gain factor G to extrapolate to the ideal G= 0 result. ZNE
hasbeenwidely adopted in part because noise-amplification schemes
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Fig.2|Zero-noise extrapolation with probabilistic error amplification.
Mitigated expectation values from Trotter circuits at the Clifford condition
6,=0.a, Convergence of unmitigated (G=1), noise-amplified (G > 1) and noise-
mitigated (ZNE) estimates of (Z,,) after four Trotter steps. In all panels, error
barsindicate 68% confidence intervals obtained by means of percentile
bootstrap. Exponential extrapolation (exp, dark blue) tends to outperform

based on pulse stretching®”*® or subcircuit repetition®***have circum-

vented the need for precise noise learning, while relying on simplistic
assumptions about the device noise. More precise noise amplification
can, however, enable substantial reductionsin the bias of the extrapo-
lated estimator, as we demonstrate here.

The sparse Pauli-Lindblad noise model proposed inref. 1turns out
to be especially well suited for noise shaping in ZNE. The model takes
the form e*, in which £ is a Lindbladian comprising Pauli jump opera-
tors P,weighted by rates A, It wasshowninref. 1that restricting tojump
operators acting on local pairs of qubits yields a sparse noise model
that can be efficiently learned for many qubits and that accurately
captures the noise associated with layers of two-qubit Clifford gates,
including crosstalk, when combined with random Pauli twirls**?*, The
noisy layer of gatesis modelled as aset of ideal gates preceded by some
noise channel A. Thus, applying A* before the noisy layer produces an
overall noise channel A°with gain G = a + 1. Given the exponential form
of the Pauli-Lindblad noise model, the map e** is obtained by simply
multiplying the Pauli rates A;by a. The resulting Pauli map can be sam-
pledto obtainappropriate circuitinstances; for a > 0, the map s a Pauli
channel that can be sampled directly, whereas for a <0, quasi-
probabilistic sampling is needed with sampling overhead y>*for some
model-specificy.InPEC, we choose a = -1to obtain an overall zero-gain
noise level. InZNE, we instead amplify the noise'®* % to different gain
levels and estimate the zero-noise limit using extrapolation. For prac-
tical applications, we need to consider the stability of the learned noise
model over time (Supplementary Information IIl.A), for instance, owing
to qubit interactions with fluctuating microscopic defects known as
two-level systems?,

Clifford circuits serve as useful benchmarks of estimates produced
by error mitigation, as they can be efficiently simulated classically®.
Notably, the entire Ising Trotter circuit becomes Clifford when 8, is
chosen to be amultiple of /2. As afirst example, we therefore set the
transverse field to zero (R,(0) =/) and evolve the initial state |0)*'%’
(Fig.1a). The CNOT gates nominally leave this state unchanged, so the
ideal weight-1observables Z,all have expectation value 1; owing to the
Paulitwirling of each layer, the bare CNOTs do affect the state. For each
Trotter experiment, we first characterized the noise models A, for the
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Trotter steps

linear extrapolation (linear, light blue) when differences between the converged
estimates of (Z,y)6.0 are well resolved. b, Magnetization (large markers) is
computed as the mean of the individual estimates of (Z,) for all qubits (small
markers).c, As circuit depthisincreased, unmitigated estimates of M, decay
monotonically fromthe ideal value of 1. ZNE greatly improves the estimates
even after 20 Trotter steps (see Supplementary Information Il for ZNE details).

three Pauli-twirled CNOT layers (Fig. 1c) and then used these models
to implement Trotter circuits with noise gain levels G € {1,1.2, 1.6}.
Figure 2aillustrates the estimation of (Z,,) after four Trotter steps
(12 CNOT layers). For each G, we generated 2,000 circuit instances
in which, before each layer /, we have inserted products of one-
qubit and two-qubit Pauli errors i from £ drawn with probabilities
p,;= (1= P1i)/2 and executed each instance 64 times, totalling
384,000 executions. As more circuit instances are accumulated, the
estimates of (Z,¢)¢, corresponding to the different gains G, converge
todistinct values. The different estimates are then fit by an extrapolat-
ing functionin Gto estimate the ideal value (Z,¢),. Theresultsin Fig.2a
highlight the reduced bias from exponential extrapolation® in com-
parisonwith linear extrapolation. That said, exponential extrapolation
can exhibit instabilities, for instance, when expectation values are
unresolvably close to zero, and—in such cases—we iteratively down-
grade the extrapolation model complexity (see Supplementary Infor-
mation I1.B). The procedure outlined in Fig. 2a was applied to the
measurement results from each qubit g to estimate all N=127 Pauli
expectations {Z,),. The variation in the unmitigated and mitigated
observables in Fig. 2b is indicative of the non-uniformity in the error
rates across the entire processor. We report the global magnetization
along 2, M, = zq (Zp/N, for increasing depth in Fig. 2c. Although the
unmitigated result shows a gradual decay from 1 with an increasing
deviation for deeper circuits, ZNE greatlyimproves agreement, albeit
with a small bias, with the ideal value even out to 20 Trotter steps, or
60 CNOT depth. Notably, the number of samples used here is much
smaller than an estimate of the sampling overhead that would be
needed in a naive PEC implementation (see Supplementary Informa-
tion IV.B). In principle, this disparity may be greatly reduced by more
advanced PEC implementations using light-cone tracing® or by
improvementsin hardware error rates. As future hardware and software
developments bring down sampling costs, PEC may be preferred when
affordable to avoid the potentially biased nature of ZNE.

Next, we test the efficacy of our methods for non-Clifford circuits
and the Clifford 6, = /2 point, with non-trivial entangling dynam-
ics compared with the identity-equivalent circuits discussed in
Fig. 2. The non-Clifford circuits are of particular importance to test,
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Fig. 3| Classically verifiable expectation values from127-qubit, depth-15
Clifford and non-Clifford circuits. Expectation value estimates for 6, sweeps
atafixed depthoffive Trotter steps for the circuitin Fig.1a. The considered
circuits are non-Clifford except at 8, = 0, /2. Light-cone and depth reductions
of respective circuits enable exact classical simulation of the observables for all
6,.Forallthree plotted quantities (panel titles), mitigated experimental results
(blue) closely track the exact behaviour (grey). In all panels, error barsindicate
68% confidence intervals obtained by means of percentilebootstrap. The
weight-10 and weight-17 observablesinb and care stabilizers of the circuit at

6, =m/2withrespective eigenvalues +1and -1; all values in chave been negated
for visual simplicity. The lower insetinadepicts variation of (Z,) at 6, = 0.2
acrossthe device before and after mitigation and compares with exact results.

as the validity of exponential extrapolation is no longer guaranteed
(see Supplementary Information V and ref. 31). We restrict the circuit
depth to five Trotter steps (15 CNOT layers) and judiciously choose
observables that are exactly verifiable. Figure 3 shows the results as
6,issweptbetween 0 and i/2 for three such observables of increasing
weight. Figure 3ashows M, as before, an average of weight-1(Z) observa-
bles, whereas Fig. 3b,c show weight-10 and weight-17 observables.
The latter operators are stabilizers of the Clifford circuit at 8, = /2,
obtained by evolution of the initial stabilizers Z;; and Z, respectively,
of |0Y®' for five Trotter steps, ensuring non-vanishing expectation
valuesinthe strongly entangling regime of particular interest. Although
the entire127-qubit circuitis executed experimentally, light-cone and
depth-reduced (LCDR) circuits enable brute-force classical simula-
tion of the magnetization and weight-10 operator at this depth (see
Supplementary Information VII). Over the full extent of the 6, sweep,
the error-mitigated observables show good agreement with the exact
evolution (seeFig.3a,b). However, for the weight-17 operator, the light
cone expandsto 68 qubits, ascale beyond brute-force classical simula-
tion, so we turn to tensor network methods.

Tensor networks have been widely used to approximate and com-
press quantum state vectors that arise in the study of the low-energy
eigenstates of and time evolution by local Hamiltonians**2>** and, more
recently, have been successfully used to simulate low-depth noisy
quantum circuits* ¢, Simulation accuracy can beimproved by increas-
ing the bond dimension y, which constrains the amount of entangle-
ment of the represented quantum state, at a computational cost
scaling polynomially with y. As entanglement (bond dimension) of a
generic state grows linearly (exponentially) with time evolution until
it saturates the volume law, deep quantum circuits are inherently dif-
ficult for tensor networks®. We consider both quasi-1D matrix product
states (MPS) and 2D isometric tensor network states (isoTNS)? that
have O(x*)and O(x”)scaling of time-evolution complexity, respectively.
Details of both methods and their strengths are provided in Methods

/4 3n/8 n/2 0 /8 /4
Ry angle 6,

3n/8 /2
Ry angle 6,

Upperinsetsinall panelsillustrate causal light cones, indicating in blue the
final qubits measured (top) and the nominal set of initial qubits that can
influence the state of the final qubits (bottom). M, also depends on126 other
conesbesides the example shown. Althoughin all panels exactresults are
obtained from simulations of only causal qubits, we include tensor network
simulations of all 127 qubits (MPS, isoTNS) to help gauge the domain of
validity for those techniques, as discussed in the main text. isoTNS results

for the weight-17 operatorin care notaccessible with current methods (see
Supplementary Information VI). Allexperiments were carriedoutfor G=1,1.2,
1.6and extrapolated asin Supplementary InformationII.B. For each G, we
generated1,800-2,000 random circuitinstances foraandband2,500-3,000
instances forc.

and Supplementary Information VI. Specifically for the case of the
weight-17 operator shownin Fig. 3c, we find thatan MPS simulation of
the LCDRcircuitaty =2,048issufficient to obtain the exact evolution
(see Supplementary Information VIII). The larger causal cone of the
weight-17 observable results in an experimental signal that is weaker
compared withthat of the weight-10 observable; nevertheless, mitiga-
tionstillyields good agreement with the exact trace. This comparison
suggests that the domain of experimental accuracy could extend
beyond the scale of exact classical simulation.

We expect that these experiments will eventually extend to circuit
volumes and observables in which such light-cone and depth reduc-
tions are no longer important. Therefore, we also study the perfor-
mance of MPS and isoTNS for the full 127-qubit circuit executed in Fig. 3,
atrespective bond dimensions of y =1,024 and xy =12, which are primar-
ily limited by memory requirements. Figure 3 shows that the tensor
network methods struggle with increasing 8,, losing both accuracy and
continuity near the verifiable Clifford point 8, = i/2. This breakdown
can be understood in terms of entanglement properties of the state.
Thestabilizer state produced by the circuit at 8, = /2 has an exactly flat
bipartite entanglement spectrum, found from a Schmidt decomposi-
tion of a 1D ordering of the qubits. Thus, truncating states with small
Schmidt weight—the basis of all tensor network algorithms—is not
justified. However, as exact tensor network representations generi-
cally require bond dimension exponential in circuit depth, truncation
isnecessary for tractable numerical simulations.

Finally, inFig.4, we stretch our experiments to regimes in which the
exact solution is not available with the classical methods considered
here. The first example (Fig. 4a) is similar to Fig. 3c but with a further
final layer of single-qubit Paulirotations that interrupt the circuit-depth
reduction that previously enabled exact verification for any 6, (see Sup-
plementary Information VII). At the verifiable Clifford point 6, =1/2,
the mitigated results agree again with the ideal value, whereas the
X =3,072 MPS simulation of the 68-qubit LCDR circuit markedly fails
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Fig.4 | Estimating expectation values beyond exact verification. Plot
markers, confidence intervals and causal light cones appear as defined in Fig. 3.
a, Estimates of aweight-17 observable (panel title) after five Trotter steps for
several values of 6,. The circuit is similar to that in Fig. 3c but with further
single-qubitrotations at the end. This effectively simulates the time evolution
ofthe spins after Trotter step six by using the same number of two-qubit gates
used for Trotter step five. Asin Fig. 3c, the observableis astabilizer at 6, = /2
with eigenvalue -1, so we negate the y axis for visual simplicity. Optimization of
the MPS simulation by including only qubits and gatesin the causal light cone

in the strongly entangling regime of interest. Although x = 2,048 was
sufficient for exact simulation of the weight-17 operator in Fig. 3c, an
MPS bond dimension of 32,768 would be needed for exact simulation
of this modified circuit and operator with 6, = 1t/2.

As afinal example, we extend the circuit depth to 20 Trotter steps
(60 CNOT layers) and estimate the 6, dependence of aweight-1observ-
able, (Z,,), inFig. 4b, in which the causal cone extends over the entire
device. Given the non-uniformity of device performance, also seenin
the spread of single-site observables in Fig. 2b, we choose an observ-
able that obtains the expected result (Z;,) =1 at the verifiable 8, =0
point. Despite the greater depth, the MPS simulations of the LCDR
circuit agree well with the experimentin the weakly entangling regime
of small 8,. Although deviations from the experimental trace emerge
with increasing 6,, we note that the MPS simulations slowly move in
the direction of the experimental data with increasing y (see Supple-
mentary Information X) and that thebond dimension needed to exactly
represent the stabilizer state and its evolution to depth 20 at 6, =1t/2
is 7.2 x10",13 orders of magnitude larger than what we considered (see
Supplementary Information VIII). For reference, as the memory
required to store an MPS scales as O(x %), already abond dimension of
x =1x10%would require 400 PB, independent of any runtime consid-
erations. Furthermore, full-state tensor network simulations are already
unableto capture the dynamics at the exactly verifiable five-step circuit
in Fig. 3a. We also note that, given the large unmitigated signal, there
may be opportunity to study time evolution at even larger depths on
the current device.

For execution times, the tensor network simulationsin Fig.4 wererun
onaé64-core, 2.45-GHz processor with 128 GB of memory, inwhich the
runtime toaccess anindividual data point at fixed 6, was 8 hfor Fig. 4a
and 30 h for Fig. 4b. The corresponding quantum wall-clock run time
was approximately 4 h for Fig. 4a and 9.5 h for Fig. 4b, but this is also
far from afundamental limit, being at present dominated by classical
processing delays that stand to be largely eliminated through concep-
tually straightforward optimizations. Indeed, the estimated device
run time for the error-mitigated expectation values using 614,400
samples (2,400 circuitinstances for each gain factor and readout error
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enables ahigher bond dimension (y = 3,072), but the simulation still fails to
approach-1(+linnegated yaxis) at 6, = /2. b, Estimates of the single-site
magnetization (Z,,) after 20 Trotter steps for several values of 8,. The MPS
simulationis light-cone-optimized and performed with bond dimension
X=1,024, whereas the isoTNS simulation (y =12) includes the gates outside
thelightcone. The experiments were carried out withG=1,1.3,1.6 foraand
G=1,1.2,1.6forb, and extrapolated as in Supplementary Information II.B.
Foreach G, we generated 2,000-3,200 random circuit instances for aand
1,700-2,400instances forb.

mitigation, with 64 shots per instance) at a conservative sampling
rate of 2 kHz is only 5 min 7 s, which can be even further reduced by
optimization of qubit reset speeds. On the other hand, the classical
simulations may also be improved by methods besides the pure-state
tensor networks considered here, such as Heisenberg operator evolu-
tionmethods, which have recently been applied to non-Clifford simu-
lations®. Another approach is to numerically emulate the ZNE used
experimentally. For example, it was recently argued that the finite-y
truncation error introduced by tensor-product compression mim-
ics experimental gate errors®. It would thus be natural to develop a
theory for extrapolating tensor network state expectation values in
thebond dimension y for time evolution, as hasbeen doneinthe case
of ground-state search®, Alternatively, one can more directly emulate
ZNE by introducing artificial dissipationinto the dynamics engineered
sothat theresulting mixed-state evolution has reduced tensor-product
bond dimension, as—for example—in dissipation-assisted operator
evolution*, and extrapolate results with respect to the strength of the
dissipation. Although such methods*** can successfully capture the
long-time dynamics of the low-weight observables of a1D spin chain,
their applicability to high-weight observables in 2D at intermediate
times is not clear—particularly as these methods are explicitly con-
structed to truncate complex operators.

The observation that a noisy quantum processor, even before
the advent of fault-tolerant quantum computing, produces reliable
expectation values atascale beyond 100 qubits and non-trivial circuit
depth leads to the conclusion that there is indeed merit to pursuing
research towards deriving a practical computational advantage from
noise-limited quantum circuits. Over recent years, substantial research
efforthasbeen directed to develop and demonstrate candidate heuris-
tic quantum algorithms’ that use noise-limited quantum circuits to esti-
mate expectation values. We have now reached reliability at ascale for
which one will be able to verify proposals and explore new approaches
to determine which can provide utility beyond classical approxima-
tion methods. At the same time, these results will motivate and help
advance classical approximation methods as both approaches serve
asvaluable benchmarks of one another. However, even withimproved



classical methods, impending order-of-magnitude improvements in
gate fidelities* and speed of superconducting quantum systems will
drive substantial enhancementsin accessible circuit volumes and paint
anincreasingly bright picture of the utility of noisy quantum computers.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06096-3.

1. vanden Berg, E., Minev, Z.K., Kandala, A. et al. Probabilistic error cancellation with sparse
Pauli-Lindblad models on noisy quantum processors. Nat. Phys. https://doi.org/10.1038/
$41567-023-02042-2 (2023).

2.  Paeckel, S. et al. Time-evolution methods for matrix-product states. Ann. Phys. 411,
167998 (2019).

3. Zaletel, M. P. & Pollmann, F. Isometric tensor network states in two dimensions. Phys. Rev.
Lett. 124, 037201 (2020).

4. Preskill, j Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

5. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004
(2022).

6.  Shor, P. W.in Proc. 35th Annual Symposium on Foundations of Computer Science 124-134
(IEEE, 1994).

7 Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. Preprint at
https://arxiv.org/abs/quant-ph/9511026 (1995).

8.  Arute, F. etal. Quantum supremacy using a programmable superconducting processor.
Nature 574, 505-510 (2019).

9. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits.
Phys. Rev. Lett. 119, 180509 (2017).

10. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error
minimization. Phys. Rev. X7, 021050 (2017).

1. Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531-536
(2022).

12.  Frey, P. & Rachel, S. Realization of a discrete time crystal on 57 qubits of a quantum
computer. Sci. Adv. 8, eabm7652 (2022).

13. Chen, I.-C., Burdick, B., Yao, Y., Orth, P. P. & ladecola, T. Error-mitigated simulation of
quantum many-body scars on quantum computers with pulse-level control. Phys. Rev.
Res. 4,043027 (2022).

14.  Mi, X. et al. Noise-resilient edge modes on a chain of superconducting qubits. Science
378, 785-790 (2022).

15.  Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys.
Rev. A 76, 042319 (2007).

16. Chow, J. M. et al. Simple all-microwave entangling gate for fixed-frequency superconducting
qubits. Phys. Rev. Lett. 107, 080502 (2011).

17. Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive
expectation values. Nat. Phys. https://doi.org/10.1038/s41567-022-01914-3 (2023).

18. Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum
processor. Nature 567, 491-495 (2019).

19. Endo, S., Benjamin, S. C. &Li, Y. Practical quantum error mitigation for near-future
applications. Phys. Rev. X 8, 031027 (2018).

20. Dumitrescu, E. F. et al. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett.
120, 210501 (2018).

21.  He, A., Nachman, B., de Jong, W. A. & Bauer, C. W. Zero-noise extrapolation for quantum-
gate error mitigation with identity insertions. Phys. Rev. A 102, 012426 (2020).

22. Giurgica-Tiron, T., Hindy, Y., Larose, R., Mari, A. & Zeng, W. J. digital zero noise extrapolation
for quantum error mitigation. in 2020 IEEE International Conference on Quantum Computing
and Engineering (QCE) 306-316 (IEEE, 2020).

23. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy
channels. Phys. Rev. Lett. 76, 722-725 (1996).

24. Knill, E. Fault-tolerant postselected quantum computation: threshold analysis. Preprint at
https://arxiv.org/abs/quant-ph/0404104 (2004).

25. Mari, A., Shammah, N. & Zeng, W. J. Extending quantum probabilistic error cancellation
by noise scaling. Phys. Rev. A104, 052607 (2021).

26. Ferracin, S. et al. Efficiently improving the performance of noisy quantum computers.
Preprint at https://arxiv.org/abs/2201.10672 (2022).

27. McDonough, B. et al. Automated quantum error mitigation based on probabilistic error
reduction. In IEEE/ACM Third International Workshop on Quantum Computing Software
(QCS) 83-93 (IEEE/ACM, 2022).

28. Carroll, M., Rosenblatt, S., Jurcevic, P., lauer, |. & Kandala, A. Dynamics of superconducting
qubit relaxation times. npj Quantum Inf. 9,132 (2022).

29. Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 70,
052328 (2004).

30. Tran, M. C., Sharma, K. & Temme, K. Locality and error mitigation of quantum circuits.
Preprint at https://arxiv.org/abs/2303.06496 (2023).

31.  Cai, Z. Multi-exponential error extrapolation and combining error mitigation techniques
for NISQ applications. npj Quantum Inf. 7, 80 (2021).

32.  Schoéllwock, U. The density-matrix renormalization group in the age of matrix product
states. Ann. Phys. 326, 96-192 (2011).

33. Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks:

Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes https://doi.org/10.21468/
SciPostPhysLectNotes.5 (2018).

34. Zhouy, Y., Stoudenmire, E. M. & Waintal, X. What limits the simulation of quantum computers?.
Phys. Rev. X10, 041038 (2020).

35. Guo, C. et al. General-purpose quantum circuit simulator with projected entangled-pair
states and the quantum supremacy frontier. Phys. Rev. Lett. 123, 190501 (2019).

36. Ayral, T. et al. Density-matrix renormalization group algorithm for simulating quantum
circuits with a finite fidelity. PRX Quantum 4, 020304 (2023).

37. Calabrese, P. & Cardy, J. Evolution of entanglement entropy in one-dimensional systems.
J. Stat. Mech. Theory Exp. 2005, P04010 (2005).

38. Bravyi, S. et al. Simulation of quantum circuits by low-rank stabilizer decompositions.
Quantum 3,181(2019).

39. Hubig, C., Haegeman, J. & Schollwdck, U. Error estimates for extrapolations with matrix-
product states. Phys. Rev. B 97, 045125 (2018).

40. Rakovszky, T., von Keyserlingk, C. W. & Pollmann, F. Dissipation-assisted operator evolution
method for capturing hydrodynamic transport. Phys. Rev. B105, 075131 (2022).

41.  White, C. D., Zaletel, M., Mong, R. S. K. & Refael, G. Quantum dynamics of thermalizing
systems. Phys. Rev. B 97, 035127 (2018).

42. Stehlik, J. et al. Tunable coupling architecture for fixed-frequency transmon
superconducting qubits. Phys. Rev. Lett. 127, 080505 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

oY 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Nature | Vol 618 | 15 June 2023 | 505


https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41567-023-02042-2
https://doi.org/10.1038/s41567-023-02042-2
https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1038/s41567-022-01914-3
https://arxiv.org/abs/quant-ph/0404104
https://arxiv.org/abs/2201.10672
https://arxiv.org/abs/2303.06496
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.21468/SciPostPhysLectNotes.5
http://creativecommons.org/licenses/by/4.0/

Article

Methods

Device calibration

The speed of cross-resonance-based CNOT gatesis dependent on the
qubit-qubit detuning and, typically, gate speeds across the device
are chosen independently to minimize individual gate errors*®. This
leadsto alarge spreadin CNOT times across the device. Noting that the
speed of each parallelized CNOT layer is limited by the slowest gate in
the layer, we develop a new tune-up scheme for large-scale processor
calibration that optimizes the layer rather than the individual gates.
First, the control and target qubits are assigned to each gate layer to
reduce crosstalk and leakage from transmon-frequency collisions. The
slowest gate in each layer then has its duration carefully optimized.
Finally, all gates in the layer are fixed to this duration and calibrated
simultaneously with error-amplification sequences**. Compared with
independently calibrated gates, the layer duration is unchanged, but
gates are slower with lower drive amplitudes, reducing any leakage
arising from multi-photon transitions. The simultaneous calibration
also ensures that the gates are calibrated as they are implemented in
the circuit.

Noise model

Throughout this work, we amplify gate noise by means of a learned
noise model. For this model, following ref. 1, ageneral Pauli channelis
approximated by A(p) =exp[L](p) with a sparse Pauli-Lindblad
generator

L(p) =Y Ai(P.pPf-p).

Here the jump operators are chosen to be Pauli operators P,with PJP,= 1
and the model is parameterized by the non-negative coefficients A,.
This model can be rewritten as

A(p) = O(w;+ (1-w)P;- P) (p),

in which w;=(1+ e 24)/2 and OL10() =(0,,° 0,1 o0 O;) represents
the composition of operators and O(-)(p) = O(p). In other words, we
can express A(p) as a composition of simple Pauli maps. For physical
noise channels, in which all A;> 0, the composition consists of simply
Pauli channels. By allowing non-zero coefficients A;only for Pauli terms
P,whose support corresponds to a single qubit or a pair of connected
qubits, we obtain a sparse noise model that can be efficiently learned
and that, despiteits simplicity, is able to capture crosstalk errors’. It is
readily seen thatexp[a£]is obtained by scaling allA;by a. Fora > O, the
resulting noise model is acomposition of Pauli channels. Samples from
this channel canbe obtained by independently sampling P,with prob-
ability 1 - w;for each of the simple channels and multiplying the results.
Fora <0, theresulting coefficients1 - w;are generally negative, leading
to a non-physical noise map. Sampling in that case can still be done,
albeit in a quasi-probabilistic manner. Doing so results in a sampling
overhead of )% inwhichy =exp (3, 24;).

Brute-force simulations

The simplest, most accurate and most limited method is simulation
of a collection of the state of M qubits as a dense vector of 2 complex
coefficients. All unitary gates, irrespective of locality, can be applied
directly tothe vector. Expectation values are found by vector-matrix-
vector product of the conjugated state, operator and state. We use this
approach for simulations up to 30 qubits.

Tensor network methods

For circuits of more than 30 qubits, we used 1D and 2D tensor network
state methods*. For a quantum state on M qubits, tensor network
methods approximate the 2" complex coefficients for the wavefunc-
tion amplitude as anetwork of contracted tensors containing O(My”)

coefficients, in which p is an integer depending on the method. Here
we consider MPS**233with p =2 and isoTNS® with p = 4. MPS represent
aquantum state as a network of rank-3 tensors that, when contracted
or multiplied together, give an approximation to the wavefunction
amplitude for each basis state. isoTNS are a restriction of projected
entangled pair states, a 2D generalization of MPS to square lattices in
which the network consists of rank-5 tensors. The accuracy and com-
putational cost of both MPS and isoTNS depend on the bond dimension
X-MPS methods have the advantage of well-developed algorithms, yet
suffer from fundamental limitations of using a1D method to simulate
a 2D system. isoTNS methods, on the other hand, are inherently 2D
methods but suffer from unavoidable sources of error not present for
MPS, though these can be systematically reduced withincreasing bond
dimension.
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